Классификатор SGD с Logloss и регуляризацией L2 с использованием SGD без использования sklearn python

Я работаю над проблемой назначения ручной реализации SGD с использованием python. Я застрял в функции производной dw.

import numpy as np 
import pandas as pd 
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=50000, n_features=15, n_informative=10, n_redundant
=5,n_classes=2, weights=[0.7], class_sep=0.7, random_state=15)

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=15)

def initialize_weights(dim):
    w=np.zeros_like(dim)
    b=0
    return w,b
dim=X_train[0] 
w,b = initialize_weights(dim)
print('w =',(w))
print('b =',str(b))

import math
def sigmoid(z):
''' In this function, we will return sigmoid of z'''
# compute sigmoid(z) and return
    test_neg_int = -z
    sig_z=1/(1+(math.exp(test_neg_int )))

    return sig_z

import math
def logloss(y_true,y_pred):
'''In this function, we will compute log loss '''
    n=len(y_true)
    loss= -(1.0/n)*sum([y_true[i]*math.log(y_pred[i],10)+ (1.0-y_true[i])*math.log(1.0-y_pred[i],10) 
    for i in range(len(y_true))])
    return loss

def gradient_dw(x,y,w,b,alpha,N):
'''In this function, we will compute the gardient w.r.to w '''
    for n in range(0,len(x)):
        dw=[] 
 # y=0, x= 15 array values, w= 15 array values of 0, b=0, alpha=0.0001, n=len(X_train)=37500
        lambda_val = 0.01
        d = x[n]*((y-alpha*((w.T)*x[n]+b)) - ((lambda_val*w)/N))
        dw.append(d)
    print (dw)

def grader_dw(x,y,w,b,alpha,N):
    grad_dw=gradient_dw(x,y,w,b,alpha,N)
    assert(np.sum(grad_dw)==2.613689585)
    return True
grad_x=np.array([-2.07864835,  3.31604252, -0.79104357, -3.87045546, -1.14783286,
   -2.81434437, -0.86771071, -0.04073287,  0.84827878,  1.99451725,
    3.67152472,  0.01451875,  2.01062888,  0.07373904, -5.54586092])
grad_y=0
grad_w,grad_b=initialize_weights(grad_x)
alpha=0.0001
N=len(X_train)
grader_dw(grad_x,grad_y,grad_w,grad_b,alpha,N)

Результат я получаю

[array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0.,
     -0., -0.])]
  ---------------------------------------------------------------------------
 AssertionError                            Traceback (most recent call last)
<ipython-input-168-a3ed60706dc2> in <module>
     10 alpha=0.0001
     11 N=len(X_train)
---> 12 grader_dw(grad_x,grad_y,grad_w,grad_b,alpha,N)

<ipython-input-168-a3ed60706dc2> in grader_dw(x, y, w, b, alpha, N)
      1 def grader_dw(x,y,w,b,alpha,N):
      2     grad_dw=gradient_dw(x,y,w,b,alpha,N)
----> 3     assert(np.sum(grad_dw)==2.613689585)
      4     return True
      5 grad_x=np.array([-2.07864835,  3.31604252, -0.79104357, -3.87045546, -1.14783286,

AssertionError: 

Ожидаемый результат:

True

Не могли бы вы сказать мне, неправильно ли я понимаю функцию gradient_dw? Я пытаюсь применить эту формулу:

dw(t) = xn * (yn − σ * (((w(t))Transpose) * xn + b(t))) − (λ * w(t)) / N)

Я пытаюсь вычислить градиент по 'w' в функции gradient_dw, чтобы использовать его позже в основном коде. Я не понимаю, что w - это массив нулей и y=0, поэтому, когда мы применим формулу dw (t) и вернем dw, мы, скорее всего, получим массив нулей, но почему он говорит " assert(np.sum(grad_dw)==2.613689585)" . как мы могли получить 2,613689585?

4 ответа

Вы здесь ошибаетесь

  1. Во время итерации мы перебираем n точек (поскольку размер пакета равен 1) при стохастическом градиентном спуске, а не d измерениях. Здесь вы перебираете d-измерения.

  2. grad_x=np.array([- 2,07864835, 3,31604252, -0,79104357, -3,87045546, -1,14783286, -2,81434437, -0,86771071, -0,04073287, 0,84827878, 1,99451725, 3,67152472, 0,0105378455, 0,07152472, 0,010528456075, 0,01053784560

Это единая точка с 15 измерениями. Поэтому измените свой запрос, как показано ниже. Это сработает.

          def gradient_dw(x,y,w,b,alpha,N):
       '''In this function, we will compute the gardient w.r.to w '''
       dw=x * (y-sigmoid(np.dot(w.T,x)+b)) -(alpha * w)/N

       return dw

Попробуй это:

      try:
   assert()
except AssertionError:
   return True

Это решение:

def gradient_dw(x,y,w,b,alpha,N):

    dw =x*(y-sigmoid(np.dot(w,x+b))) - ((alpha*w)/N)
    return dw
      def gradient_dw(x,y,w,b,alpha,N):

   dw=(x*(y-sigmoid((w.T)*x+b)-(alpha/N)*w))
   return dw 
Другие вопросы по тегам