AssertionError: defaultdict(<функция mc_control_importance_sampling. <locals>. <lambda> at 0x7f31699ffe18>
Я работал над DQN, используя стабильные базовые показатели и дискретную среду с 3 действиями.
Я использую руководство по RL https://github.com/dennybritz/reinforcement-learning/blob/master/MC/MC%20Control%20with%20Epsilon-Greedy%20Policies%20Solution.ipynb
для справки
env = gym.make('fishing-v0')
model = DQN(MlpPolicy, env , verbose=2)
trained_model = model.learn(total_timesteps=10000)
Но у меня возникли проблемы с моими вспомогательными функциями для методов Монте-Карло.
def mc_control_importance_sampling(env, num_episodes, discount = .99):
"""
Monte Carlo Control Off-Policy Control using Weights for Sampling.
Finds an optimal greedy policy.
"""
# creates Q dictionary that maps obs to action values
Q = defaultdict(lambda: np.zeros(env.action_space))
#dictionary for weights
C = defaultdict(lambda: np.zeros(env.action_space))
# learn greedy policy
target_policy = env.step(Q)
for i_episode in range(1, num_episodes + 1):
if i_episode % 1 == 0:
print("\rEpisode {}/{}.".format(i_episode, num_episodes), end="")
# Generate an episode to be tuple (state, action, reward) tuples
episode = []
obs = env.reset()
for t in range(100):
# Sample an action from our policy
action, _states = trained_model.predict(obs)
next_state, reward, done, _ = env.step(action)
episode.append((state, action, reward))
if done:
break
obs = next_obs
# Sum of discounted returns
G = 0.0
# weights for return
W = 1.0
for t in range(len(episode))[::-1]:
obs, action, reward = episode[t]
G = discount * G + reward
# Add weights
C[obs][action] += W
# Update policy
Q[obs][action] += (W / C[obs][action]) * (G - Q[obs][action]
if action != np.argmax(target_policy(obs)):
break
W = W * 1./behavior_policy(obs)[action]
return Q, target_policy
Когда я вызываю функцию,
Q, policy = mc_control_importance_sampling(env, num_episodes=500000)
Я получаю ошибку
AssertionError Traceback (most recent call last)
<ipython-input-58-eb968b9ff6e3> in <module>()
----> 1 Q, policy = mc_control_importance_sampling(env, num_episodes=500000)
1 frames
/content/gym_fishing/gym_fishing/envs/fishing_env.py in step(self, action)
76 def step(self, action):
77
---> 78 assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action))
79
80 if self.n_actions > 3:
AssertionError: defaultdict(<function mc_control_importance_sampling.<locals>.<lambda> at 0x7f31699ffe18>, {}) (<class 'collections.defaultdict'>) invalid
How do I fix this, your help would be appreciated.
Я не знаю, как это исправить,
Спасибо