Ускорьте параллельное решение событий, содержащих ODE
Следующий код представляет собой упрощенную версию моей актуальной проблемы:
# Libraries
library(desolve)
library(parallel)
# End time
max_time <- 300
# Time vector
time <- seq(0, max_time, 0.1)
# Number of events
n_events <- c(6, 60, 600, 6000)
# p1 values
p1_vars <- 10^c(-4, -2, 0, 2)
# Parameters
p <- data.frame(p1 = 1.14*24,
p2 = 0.14*24,
p3 = 0.06*24,
p4 = 0.5,
p5 = 0.05,
p6 = 0,
p7 = 0.218,
p8 = 0.477,
p9 = 0.5/6)
# Initial conditions
x0 <- c(x1 = 0,
x2 = 0,
x3 = 2e11,
x4 = 8e11)
# Model
sys <- function(t, y, p) {
dy = numeric(4)
dy[1] = p$p2*y[2] - (p$p3 + p$p1)*y[1]
dy[2] = p$p3*y[1] - p$p2*y[2]
dy[3] = (p$p4 - p$p7 - p$p8)*y[3] + p$p5*y[4] - p$p9*y[1]*y[3]
dy[4] = p$p7*y[3] - (p$p5 + p$p6)*y[4]
list(dy)
}
# Number of corse to parallelise
n_cores <- detectCores() - 1
# Initialise
input.df <- data.frame(eventfreq = rep(n_events/max_time, length(p1_vars)),
par = rep(p1_vars, each = length(n_events)))
res.df <- data.frame(eventfreq = NaN,
par = NaN,
out = NA)
# Parallel function
par_fcn <- function(i) {
# p1 value
p$p1 <- input.df$par[i]
# Event value
ev_val <- 1000/input.df$eventfreq[i]*max_time
# Events
ev <- data.frame(var = 'x1',
time = seq(0, max_time, by = 1/input.df$eventfreq[i]),
value = 100,
method = 'add')
# Solve ODE
sim.df <- as.data.frame(ode(y = x0, times = time, func = sys, p = p, events = list(data = ev)))
# Fill
res.df$eventfreq <- input.df$eventfreq[i]
res.df$par <- input.df$par[i]
res.df$out <- sim.df$x3 + sim.df$x4
# Return
return(res.df)
}
# Evaluate in parallel
res_parallel <- mclapply(seq_len(nrow(input.df)), par_fcn, mc.cores = n_cores)
out.df <- do.call(rbind, res_parallel)
Как видите, я пытаюсь решить ODE с desolve
для диапазона значений параметров и различного количества событий. Несмотря на то, что я распараллелил код и распределил его по 7 ядрам, моя настоящая проблема все еще занимает очень много времени. В качестве узкого места я определил решатель ODE, особенно когда количество событий становится большим.
Есть ли идеи, как этот код может быть ускорен?
Я также пытался реализовать это в скомпилированном коде в соответствии с виньеткой R Package deSolve: Написание кода на скомпилированных языках. Но я слишком неопытен в Си, чтобы делать это самостоятельно.
Вот что я получил так далеко:
/*file model.c */
#include <R.h>
static double p[9];
#define p1 p[0]
#define p2 p[1]
#define p3 p[2]
#define p4 p[3]
#define p5 p[4]
#define p6 p[5]
#define p7 p[6]
#define p8 p[7]
#define p9 p[8]
/* initialiser */
void initmod(void (*odeparms)(int *, double *))
{
int N = 9;
odeparms(&N, p);
}
/* Events */
void event(int *n, double *t, double *y)
{
y[0] = y[0] + 100;
}
/* Derivatives */
void derivs (int *neq, double *t, double *y, double *ydot, double *yout, int *ip)
{
if (ip[0] < 1) error("nout should be at least 1");
ydot[0] = p2*y[1] - (p3 + p1)*y[0];
ydot[1] = p3*y[0] - p2*y[1];
ydot[2] = (p4 - p7 - p8)*y[2] + p5*y[3] - p9*y[0]*y[2];
ydot[3] = p7*y[2] - (p5 + p6)*y[3];
yout[0] = y[0];
yout[1] = y[2] + y[3];
}
/* END file model.c */
В этом я особенно не могу следовать виньетки о том, как пройти n_events
а также p1_vars
параметр к коду.
Любая помощь или советы будут с благодарностью.