Вычисление скорости сходимости в фенике
Я новичок в fenics, и мне действительно нужна помощь для отладки моего кода. В основном я пытаюсь решить зависящее от времени частичное дифференциальное уравнение, и я хотел бы вычислить степень сходимости норм ошибки, которые у меня есть. однако я продолжаю получать эту ошибку, которую я не понимаю, что это значит или даже как преодолеть это!
rates[degree][error_type] = []
KeyError: 1
и это мой полный код
T = 2.0 # final time
beta = 1.2 # parameter beta
tol = 3E-16
bound_a=0.0
bound_b=1.0
r=1.0
m=0.1
num_levels=3
max_degree=3
h = {} # discretization parameter: h[degree][level]
E = {} # error measure(s): E[degree][level][error_type]
# Iterate over degrees and mesh refinement levels
degrees = range(1, max_degree + 1)
for degree in degrees:
h[degree] = []
E[degree] = []
for i in range(num_levels):
num_steps = pow(4,i) # number of time steps
dt = T / num_steps # time step size
# Create mesh and define function space
mesh_division= int(sqrt(num_steps))
mesh = IntervalMesh(mesh_division,bound_a,bound_b)
h[degree].append(1.0 / mesh_division)
V = FunctionSpace(mesh, 'P', 1)
# Define boundary condition
u_D = Expression('(b-a)/2 + beta*t +(x[0]-a)*(x[0]-b)', degree=1, beta=beta,a=bound_a,b=bound_b, t=0.0)
def boundary(x, on_boundary):
return on_boundary and (abs((x[0]-bound_a)*(x[0]-bound_b))<tol)
bc = DirichletBC(V, u_D, boundary)
# Define initial value
u_n = interpolate(u_D, V)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(0.0)
F = u*v*dx + dt*inner(grad(u), grad(v))*dx + dt*inner(grad(u_n), grad(u))*dx -dt*r*(m-u_n)*v*dx- (u_n + dt*f)*v*dx
a, L = lhs(F), rhs(F)
# Time-stepping
u = Function(V)
time = 0.0
for n in range(num_steps):
# Update current time
time += dt
u_D.t = time
# Compute solution
solve(a == L, u, bc)
u_e= interpolate(u_D, V)
def compute_errors(u_e, u):
# Infinity norm based on nodal values
E1 = abs(u_e.vector().get_local() - u.vector().get_local()).max()
# L2 norm
E2 = errornorm(u_e, u, norm_type='L2')
# H1 seminorm
E3 = errornorm(u_e, u, norm_type='H10')
# Collect error measures in a dictionary with self-explanatory keys
errors = {'infinity norm': E1,
'L2 norm': E2,
'H10 seminorm': E3}
return errors
errors = compute_errors(u_e, u)
E[degree].append(errors)
#Compute convergence rates
etypes = list(E[1][0].keys())
rates = {}
for error_type in sorted(etypes):
rates[degree][error_type] = []
for i in range(1, num_levels):
Ei = E[degree][i][error_type]
r = ln(Ei / Eim1) / ln(h[degree][i] / h[degree][i - 1])
rates[degree][error_type].append(round(r, 2))
# Update previous solution
u_n.assign(u)
любая помощь будет оценена. Большое спасибо