Как найти неподвижные точки или найти неподвижные точки (численно) в этой системе с помощью Matlab?

Надеюсь помочь мне в этой проблеме. Мне нравится находить точки исправления в этой системе.

Я написал код в Matlab следующим образом:

clear all;
close all;
clc;
%
tic;
rand('state',sum(100*clock)); % seed
%

numreps=2; % Number of iterations
for j=1:numreps
  options = odeset('RelTol',1e-6,'Stats','on');  
% Parameters values of adults and tadpoles

    % Fecundity (number of new individuals)
    aH = 800; % minimum number offsprings 
              % per each host adults per year
              % Mitchell 2008

    % Metamorphosis rate
    ah = 0.16; % Metamorphosis rate per year
               % Mitchell 2008

    % Natural dead hosts whitout infection 
    bH =  0.73; % Natural mortality rate in adults 
                % per year Mitchell 2008

    bh = 7.55; % Natural mortality rate in adults 
               % per year Mitchell 2008

    % Host mortality due to infection 
    alphaH = 0.001; % Mortality rate per adult host 
                    % per unit time due to infection 
                    % this work

    alphah = 3.25;  % Mortality rate per adult host 
                    % per unit time due to infection 
                    % this work

    % Natural mortality zoospores within hosts
    muH = 117*52; % Natural mortality in zoospores 
                  % in adults Woodhams 2008 at an 
                  % average temperature 17.38 per year

    muh = 117*52; % Natural mortality in zoospores 
                  % in adults Woodhams 2008 at an 
                  % average temperature 17.38 per year

    %zoospore release rate
    lambdaH = 1*10^5; % Release rate of new zoospores 
                        % within the body of the tadpole 
                        % host to the pool per year Mitchel 2008

    lambdah = 6.6*10^5; % Release rate of new zoospores 
                        % within the body of the tadpole 
                        % host to the pool per year Mitchel 2008

    % Zoospores recruitment rate within host
    rH = 124*52; % Maximum birth rate of new zoospores
                 % within the pre-adult host body 
                 % per unit time Woodhams et al 2008

    rh = 124*52; % Maximum birth rate of new zoospores
                 % within the pre-adult host body 
                 % per unit time Woodhams et al 2008

    % Zoospores transmission rate since pool 
    % Mitchell 2008
    betaH = 6*10^-9; % Rate of transmission of a spore
                     % to an individual per year
                     % Mitchell pre-adult 2008 

    betah = 6*10^-9; % Rate of transmission of a spore
                     % to an individual per year
                     % Mitchell pre-adult 2008 

   % Recapture factor of spores that are released by 
    % sporangium from the skin of the hosts
    varrhoH1 = 10^-2;
    varrhoH = varrhoH1*lambdaH; % Proportion of zoospores 
                                % that are immediately absorbed into 
                                % the skin of adult hopederos, 
                                % who depend on the zoospores released 
                                % by sporangiumos sporangios
    varrhoh1 = 10^-2;                                       
    varrhoh = varrhoh1*lambdah; % Proportion of zoospores 
                                % that are immediately absorbed into 
                                % the skin of adult hopederos, 
                                % who depend on the zoospores released 
                                % by sporangiumos sporangios

   % Maximum absorption factor of 
   % zoospores by host values taken 
   % from Woodhams 2008
     phiH = 10^4;  % Inverse absorption factor 
                   % per host, if low 
                   % absorption is high and viceversa

     phih = 10^4;  % Inverse absorption factor 
                   % per host, if low 
                   % absorption is high and viceversa

    % Natural mortality of zoospores into the pool 
    muZ = 45*52; % Tasa de mortalidad natural 
                % de la zoosporas Castro 2015 
                % por año

    % Carrying capacity of species
    KH = 10^5; % adults host
    Kh = 10^5; % tadpoles host


    %x(1) = H; x(2) = h; x(3) = ZH; 
    %x(4) = Zh; x(5) = Z;

    G = @(t, x, ah, aH, bh, bH, muh, muH, alphah, ...
        alphaH, lambdah, lambdaH, rh, rH, phih, phiH, ...
        varrhoh, varrhoH, muZ, betaH, betah, Kh, KH) ...
        [ah *  x(2) * exp(-Kh * x(2)) - bH * x(1) - alphaH * x(3); ...
        aH * x(1) - (bh + ah * exp(-Kh * x(2))) * x(2) - alphah * x(4); ...
        rH * x(3) * exp(-phiH * x(3)) + lambdaH * x(3) * (x(1)./(varrhoH + x(1))) + x(5) * betaH * (x(1)./(x(1) + x(2))) - x(3) * (bH + muH) - alphaH * x(1) * (x(3)./x(1) + (x(3)./x(1))^2 * ((phiH + 1)./phiH)); ...
        rh * x(4) * exp(-phih * x(4)) + lambdah * x(4) * (x(2)./(varrhoh + x(2))) + x(5) * betah * (x(2)./(x(1) + x(2))) - x(4) * (bh + ah * exp(-Kh * x(2)) + muh) - alphah * x(2) * (x(4)./x(2) + (x(4)./x(2))^2 * ((phih + 1)./phih)); ...
        lambdaH * x(3) + lambdah * x(4) - x(5) * (muZ + betaH * (x(1)./(x(1) + x(2))) + betah * (x(2)./(x(1) + x(2))))-(lambdaH * x(3) * (x(1)./(varrhoH + x(1))) + lambdah * x(4) * (x(2)./(varrhoh + x(2))))];
    %tspan = [0:0.001:50];
    x0 = [100 100 10 10 500];
    [t,xa] = ode45(@(t,x) G(t, x, ah, aH, bh, bH, muh, muH, ...
        alphah, alphaH, lambdah, lambdaH, rh, rH, phih, phiH, ...
        varrhoh, varrhoH, muZ, betaH, betah, Kh, KH), ...
        [0 50], x0, options);

    H = xa(:,1)';
    h = xa(:,2)';
    Zh = xa(:,3)';
    ZH = xa(:,4)';
    Z = xa(:,5)';
    end 

Решения системы выше, когда я создаю график с помощью этого кода:

%
figure1 = figure;

% Create axes
axes1 = axes('Parent',figure1);
hold(axes1,'on');

% Create multiple lines using matrix input to plot
plot1 = plot(t,xa,'LineWidth',3,'Parent',axes1);
set(plot1(1),'DisplayName','Adults host, H(t)');
set(plot1(2),'DisplayName','Tadpoles host, h(t)');
set(plot1(3),'DisplayName','Spores into the adults, ZH(t)','LineStyle','--');
set(plot1(4),'DisplayName','Spores into the tadpole, Zh(t)','LineStyle',':');
set(plot1(5),'DisplayName','External Pool of spores, Z(t)',...
'LineStyle','-.');

% Uncomment the following line to preserve the X-limits of the axes
% xlim(axes1,[0 5]);
% Uncomment the following line to preserve the Y-limits of the axes
% ylim(axes1,[-500 3000]);
box(axes1,'on');
grid(axes1,'on');
% Create xlabel
xlabel('Time in years');
% Create ylabel
ylabel('Population size');
% Set the remaining axes properties
set(axes1,'FontSize',12);
% Create legend
legend1 = legend(axes1,'show');
set(legend1,'FontSize',10);
%}

и это график

согласно предыдущему графику решения системы сходятся к неподвижным точкам. Есть ли способ численно рассчитать фиксированные точки предыдущей системы с помощью Matlab?

0 ответов

Другие вопросы по тегам