Беспокоюсь, если моя Оптимизация колоний муравьев просто находит путь, используя метод ближайшего соседа
Я пытаюсь решить проблему коммивояжера, используя алгоритм оптимизации колонии муравьев. Я приложил свой код с этим. Сейчас это работает нормально для всех тестовых случаев (тех, которые я тестировал) и дает правильные ответы. Но все же я не удовлетворен этим. Это потому что:
- Хотя я изменяю значения альфа, бета, это никак не влияет на решение.
- Хотя я оставляю MAX_Ants только 1, но он также находит то же решение.
- Я думаю, что это просто поиск ближайшего соседа и ничего больше и, следовательно, зачем нужен какой-то другой материал:(.
Вот мой код:
/*Assumptions are: 1) Every city is connected to every other city by 2-way roads
2) Total distance travelled in one tour will never exceed 32500 */
#include <iostream>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
using namespace std;
#define MAX_Ants 100
#define MAX_Cities 20
#define NOTHING -1
#undef INFINITY
#define INFINITY 32765
//int how_many_paths(int map[MAX_Cities][], int v);
double alpha = -1.5;
double beta = 1.1;
double Pheromone_Decay_Factor=0.1;
double Pheromone_Bonus_Factor=0.15;
//Take no. of cities in country
int no_of_cities;
//Take the map and distance of each city from each city
int map_of_city[MAX_Cities][MAX_Cities]={0};
struct Best_tour;
class Ant
{
private:
int generate_next_city();
bool Travel_On();
public:
int cities_travelled;
int what_have_i_travelled[MAX_Cities];
double Tour_value;
static double pheromone[MAX_Cities][MAX_Cities];
Ant()
{
cities_travelled=0;
Tour_value=0;
}
Ant(Ant &a)
{
cities_travelled=a.cities_travelled;
for(int i=0; i<cities_travelled; i++)
what_have_i_travelled[i]=a.what_have_i_travelled[i];
}
bool live_your_tour();
void add_initial_city(int k)
{
what_have_i_travelled[cities_travelled++]=k;
}
static void init_pheromone()
{
for(int i=0; i<MAX_Cities; i++)
for(int j=0; j<MAX_Cities; j++)
pheromone[i][j]=1.0;
}
friend void copy(Best_tour *b, int visited_cities[], int no_of_cities, double tour_value);
};
double Ant::pheromone[MAX_Cities][MAX_Cities];
int Ant::generate_next_city()
{
int next_city = NOTHING, last = what_have_i_travelled[cities_travelled-1], flag;
double max_weight_till_now = -INFINITY;
for(int i=0; i<no_of_cities; i++)
{
flag=1;
for(int j=0; j<cities_travelled; j++)
{
if(i == what_have_i_travelled[j])
{
flag=0;
break;
}
}
if(flag)
{
double weight = pow(map_of_city[last][i], alpha) * pow(pheromone[last][i], beta);
if(weight > max_weight_till_now)
{
max_weight_till_now = weight;
next_city = i;
}
}
}
return next_city;
}
bool Ant::Travel_On()
{
int next_city = generate_next_city();
if(next_city != NOTHING)
{
int current_distance = map_of_city[what_have_i_travelled[cities_travelled-1]][next_city];
Tour_value += current_distance;
what_have_i_travelled[cities_travelled++]=next_city;
return true;
}
return false;
}
bool Ant::live_your_tour()
{
Tour_value=0;
while(Travel_On());
if(cities_travelled==no_of_cities)
{
Tour_value += map_of_city[what_have_i_travelled[0]][what_have_i_travelled[cities_travelled-1]];
what_have_i_travelled[cities_travelled++]=what_have_i_travelled[0];
return true;
}
return false;
}
typedef struct Best_tour
{
int visited_cities[MAX_Cities];
double tour_value;
}Best_tour;
void copy(Best_tour *b, int visited_cities[], int no_of_cities, double tour_value);
int main()
{
//Take no. of cities in country
cout<<"Enter No. of Cities: ";cin>>no_of_cities; //No. of Cities
//Take the map and distance of each city from each city
for(int i=0; i<no_of_cities; i++)
for(int j=i+1; j<no_of_cities; j++)
{
cout<<"Enter Value of path "<<i+1<<" to "<<j+1<<" : "; cin>>map_of_city[i][j];
map_of_city[j][i]=map_of_city[i][j];
}
//Now we are going to find the solution for TSP
//1. We have some no. of ants
//2. We are going to choose initial city of each ant randomly
//3. Also we have Pheromone Table which will be initialized to some value
//4. Initially Best tour will be NULL or initializes to some least values
Best_tour B;
B.tour_value=32766;
int visited_cities[MAX_Cities]={0};
double worst_tour_value= INFINITY;
copy(&B, visited_cities, no_of_cities, worst_tour_value);
Ant::init_pheromone();
const int no_of_ants=MAX_Ants;
Ant ant_number[no_of_ants];
//Now all initialization part is done
//here we are starting the actual algorithm of ACO for solving TSP
for(int i=0; i<no_of_ants; i++)
ant_number[i].add_initial_city(rand()%no_of_cities);
for(int i=0; i<no_of_ants; i++)
{
bool success = ant_number[i].live_your_tour();
int flag=0;
if(success)
{
double delta = ant_number[i].Tour_value - B.tour_value;
if(delta<0)
{
copy(&B, ant_number[i].what_have_i_travelled, ant_number[i].cities_travelled, ant_number[i].Tour_value);
flag=1;
}
}
if(1)
{
bool road_is_in_best_path[MAX_Cities][MAX_Cities]={false};
for(int i=0; i<no_of_cities-1; i++)
road_is_in_best_path[B.visited_cities[i]][B.visited_cities[i+1]]=true;
for(int i=0; i<no_of_cities; i++)
for(int j=0; j<no_of_cities; j++)
{
if(road_is_in_best_path[i][j])
Ant::pheromone[i][j] += Ant::pheromone[i][j] * Pheromone_Bonus_Factor;
else
Ant::pheromone[i][j] *= (1 - Pheromone_Decay_Factor);
}
}
}
cout<<"Best Path is ";
for(int i=0; i<=no_of_cities; i++)
cout<<" "<<B.visited_cities[i];
cout<<"\nTour value is "<<B.tour_value<<endl;
cout<<"\nFinal Pheromone Table is:"<<endl;
for(int i=0; i<no_of_cities; i++)
{
for(int j=0; j<no_of_cities; j++)
{
printf("%.4lf ", Ant::pheromone[i][j]);;
}
cout<<endl;
}
return 0;
}
void copy(Best_tour *b, int visited_cities[], int no_of_cities, double tour_value)
{
if(b->tour_value > tour_value)
{
b->tour_value = tour_value;
for(int i=0; i < no_of_cities; i++)
b->visited_cities[i]=visited_cities[i];
}
}
Я хочу знать, является ли мое понимание или метод реализации неправильным в отношении ACO. Как это решение для поиска кода только с одним муравьем. Куда я иду не так? Или где я могу что-то исправить и улучшить этот алгоритм?
Что я думаю, так это проблема техники генерации следующего города и обновления таблицы феромонов!
1 ответ
Вы можете попробовать инструмент TSPANTSIM для результатов, в частности. Этот инструмент поможет вам выбрать правильное значение для альфа и бета