Фильтр эластичных поисковых запросов и агрегирование не работают
У меня есть приведенный ниже документ и поисковый запрос, когда я выполняю эластичный запрос, извлекающий сценарий несогласованных документов для совпадающего exceptionId, он должен выполнять агрегацию, но он извлекает все документы, а также агрегация не работает.
1) элемент
2) расположение
3) transportMode
4) sourceLocation
5) shipDate
6) прибытие
Отображение:
{
"mappings": {
"recommendations": {
"properties": {
"recommendations": {
"type": "nested"
}
}
}
}
}
Документ:
{
"recommendations": [
{
"id": "578bd845-3ca9-495f-bc13-dbcc48e8f415",
"tenantId": "0d474f0a-f060-4828-b2ec-a81c4b27fa2e",
"clusterId": "1",
"eventId": "1",
"exceptionId": "1",
"eventType": "Delayed",
"item": "Item1",
"location": "DC1",
"dueDate": "2019-01-10T05:30:00.000+0530",
"exceptionQuantity": 100,
"recommendationType": "stockTransfer",
"customerName": "Walmart",
"primaryRecommendation": true,
"priority": 1,
"sourceLocation": "DC2",
"transferQuantity": 100,
"shipDate": "2019-01-09T05:30:00.000+0530",
"arrivalDate": "2019-01-10T05:30:00.000+0530",
"transportMode": "Road",
"transferCost": 500,
"maxQtyAvailableForTransfer": 100,
"totalQtyAtSource": 100,
"operation": "Road-Item1-from-DC2-to-DC1",
"peggedStockDemandId": "1",
"revenueRecovered": "20000.0"
},
{
"id": "578bd845-3ca9-495f-bc13-dbcc48e8f415",
"tenantId": "0d474f0a-f060-4828-b2ec-a81c4b27fa2e",
"clusterId": "1",
"eventId": "1",
"exceptionId": "1",
"eventType": "Delayed",
"item": "Item1",
"location": "DC1",
"dueDate": "2019-01-10T05:30:00.000+0530",
"exceptionQuantity": 100,
"recommendationType": "stockTransfer",
"customerName": "Walmart",
"primaryRecommendation": true,
"priority": 1,
"sourceLocation": "DC2",
"transferQuantity": 100,
"shipDate": "2019-01-09T05:30:00.000+0530",
"arrivalDate": "2019-01-10T05:30:00.000+0530",
"transportMode": "Road",
"transferCost": 500,
"maxQtyAvailableForTransfer": 100,
"totalQtyAtSource": 100,
"operation": "Road-Item1-from-DC2-to-DC1",
"peggedStockDemandId": "1",
"revenueRecovered": "20000.0"
},
{
"id": "578bd845-3ca9-495f-bc13-dbcc48e8f415",
"tenantId": "0d474f0a-f060-4828-b2ec-a81c4b27fa2e",
"clusterId": "1",
"eventId": "1",
"exceptionId": "2",
"eventType": "Delayed",
"item": "Item1",
"location": "DC1",
"dueDate": "2019-01-10T05:30:00.000+0530",
"exceptionQuantity": 100,
"recommendationType": "stockTransfer",
"customerName": "Walmart",
"primaryRecommendation": true,
"priority": 1,
"sourceLocation": "DC2",
"transferQuantity": 100,
"shipDate": "2019-01-09T05:30:00.000+0530",
"arrivalDate": "2019-01-10T05:30:00.000+0530",
"transportMode": "Road",
"transferCost": 500,
"maxQtyAvailableForTransfer": 100,
"totalQtyAtSource": 100,
"operation": "Road-Item1-from-DC2-to-DC1",
"peggedStockDemandId": "1",
"revenueRecovered": "20000.0"
}
]
}
Запрос:
{
"aggregations": {
"exceptionIds": {
"filter": {
"terms": {
"exceptionId": [
"1"
],
"boost": 1
}
},
"aggregations": {
"by_exceptionId": {
"terms": {
"field": "recommendations.exceptionId.keyword",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": false,
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
},
"aggregations": {
"by_item": {
"terms": {
"field": "recommendations.item.keyword",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": false,
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
},
"aggregations": {
"by_destination": {
"terms": {
"field": "recommendations.location.keyword",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": false,
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
},
"aggregations": {
"by_trans": {
"terms": {
"field": "recommendations.transportMode.keyword",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": false,
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
},
"aggregations": {
"by_sourcelocation": {
"terms": {
"field": "recommendations.sourceLocation.keyword",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": false,
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
},
"aggregations": {
"by_shipdate": {
"terms": {
"field": "recommendations.shipDate.keyword",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": false,
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
},
"aggregations": {
"by_arrival": {
"terms": {
"field": "recommendations.arrivalDate.keyword",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": false,
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
},
"aggregations": {
"quantity": {
"sum": {
"field": "recommendations.stockTransfer.transferQuantity"
}
},
"transfercost": {
"sum": {
"field": "recommendations.stockTransfer.transferCost"
}
},
"revenueRecovered": {
"sum": {
"field": "recommendations.stockTransfer.revenueRecovered"
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
Ответ:
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 1.0,
"hits": [
{
"_index": "testing",
"_type": "recommendations",
"_id": "1",
"_score": 1.0,
"_source": {
"recommendations": [
{
"id": "578bd845-3ca9-495f-bc13-dbcc48e8f415",
"tenantId": "0d474f0a-f060-4828-b2ec-a81c4b27fa2e",
"clusterId": "1",
"eventId": "1",
"exceptionId": "1",
"eventType": "Delayed",
"item": "Item1",
"location": "DC1",
"dueDate": "2019-01-10T05:30:00.000+0530",
"exceptionQuantity": 100,
"recommendationType": "stockTransfer",
"customerName": "Walmart",
"primaryRecommendation": true,
"priority": 1,
"sourceLocation": "DC2",
"transferQuantity": 100,
"shipDate": "2019-01-09T05:30:00.000+0530",
"arrivalDate": "2019-01-10T05:30:00.000+0530",
"transportMode": "Road",
"transferCost": 500,
"maxQtyAvailableForTransfer": 100,
"totalQtyAtSource": 100,
"operation": "Road-Item1-from-DC2-to-DC1",
"peggedStockDemandId": "1",
"revenueRecovered": "20000.0"
},
{
"id": "578bd845-3ca9-495f-bc13-dbcc48e8f415",
"tenantId": "0d474f0a-f060-4828-b2ec-a81c4b27fa2e",
"clusterId": "1",
"eventId": "1",
"exceptionId": "2",
"eventType": "Delayed",
"item": "Item1",
"location": "DC1",
"dueDate": "2019-01-10T05:30:00.000+0530",
"exceptionQuantity": 100,
"recommendationType": "stockTransfer",
"customerName": "Walmart",
"primaryRecommendation": true,
"priority": 1,
"sourceLocation": "DC2",
"transferQuantity": 100,
"shipDate": "2019-01-09T05:30:00.000+0530",
"arrivalDate": "2019-01-10T05:30:00.000+0530",
"transportMode": "Road",
"transferCost": 500,
"maxQtyAvailableForTransfer": 100,
"totalQtyAtSource": 100,
"operation": "Road-Item1-from-DC2-to-DC1",
"peggedStockDemandId": "1",
"revenueRecovered": "20000.0"
}
]
}
}
]
},
"aggregations": {
"exceptionIds": {
"doc_count": 0,
"by_exceptionId": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": []
}
}
}
}
1 ответ
Используя ваше отображение и создайте рекомендацию типа "вложенный". Вам нужно использовать вложенный фильтр в агрегации. Используя вложенный тип, вы можете рассматривать каждый объект массива как отдельный тип, иначе они будут сглажены.
Пример.
Документ 1: "id":"1" "рекомендации":[ { "eventId": "1", "exceptionId":"1" }, { "eventId": "2", "exceptionId":"2" } ]
Док 2:
"id":"1" "рекомендации":[ { "eventId": "2", "exceptionId":"1" } ]
Рассмотрим выше 2 документа с рекомендацией, отображенной как объект. Если вы отфильтруете документ, который имеет eventId:2 и exceptionId:1, он вернет оба документа, поскольку типы объектов сглаживаются, а связь между полями объекта не поддерживается, он рассматривается как единый документ.
Когда рекомендация отображается как "вложенный тип", будет возвращен документ 2. Даже если вы отфильтровали документ с использованием вложенного типа в запросе. При агрегировании он снова должен использоваться, поскольку все объекты массива возвращаются запросом.
Картография
{
"index10" : {
"mappings" : {
"properties" : {
"recommendations" : {
"type" : "nested",
"properties" : {
"arrivalDate" : {
"type" : "date"
},
"clusterId" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"customerName" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"dueDate" : {
"type" : "date"
},
"eventId" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"eventType" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"exceptionId" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"exceptionQuantity" : {
"type" : "long"
},
"id" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"item" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"location" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"maxQtyAvailableForTransfer" : {
"type" : "long"
},
"operation" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"peggedStockDemandId" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"primaryRecommendation" : {
"type" : "boolean"
},
"priority" : {
"type" : "long"
},
"recommendationType" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"revenueRecovered" : {
"type" : "float"
},
"shipDate" : {
"type" : "date"
},
"sourceLocation" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"tenantId" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"totalQtyAtSource" : {
"type" : "long"
},
"transferCost" : {
"type" : "long"
},
"transferQuantity" : {
"type" : "long"
},
"transportMode" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
}
}
Запрос:
{
"size": 0, --> hits will not be returned
"aggregations": {
"exceptionIds": {
"nested": {
"path": "recommendations" --> nested agrregation on nested
},
"aggs": {
"recomm": {
"filter": {
"terms": {
"recommendations.exceptionId.keyword": [ --> filter on exceptionId
"1"
]
}
},
"aggs": {
"revenueRecovered": {
"sum": {
"field": "recommendations.revenueRecovered"
}
},
"transfercost": {
"sum": {
"field": "recommendations.transferCost"
}
},
"transferQuantity": {
"sum": {
"field": "recommendations.transferQuantity"
}
}
}
}
}
}
}
}
Результат:
"aggregations" : {
"exceptionIds" : {
"doc_count" : 2,
"recomm" : {
"doc_count" : 1,
"transferQuantity" : {
"value" : 100.0
},
"transfercost" : {
"value" : 500.0
},
"revenueRecovered" : {
"value" : 20000.0
}
}
}
}