Обнимающее лицо - RuntimeError: обнаружена RuntimeError в реплике 0 на устройстве 0 в Azure Databricks

Как запустить сценарий run_language_modeling.py из обнимающего лица с использованием предварительно обученной модели случая Роберты для точной настройки с использованием моих собственных данных в блоках данных Azure с кластером графического процессора.

Использование Transformer версии 2.9.1 и 3.0 . Python 3.6 Torch `1.5.0 torchvision 0.6

Это сценарий, который я запускал ниже на базе данных Azure.

%run '/dbfs/FileStore/tables/dev/run_language_modeling.py' \
  --output_dir='/dbfs/FileStore/tables/final_train/models/roberta_base_reduce_n' \
  --model_type=roberta \
  --model_name_or_path=roberta-base \
  --do_train \
  --num_train_epochs 5 \
  --train_data_file='/dbfs/FileStore/tables/final_train/train_data/all_data_desc_list_full.txt' \
  --mlm 

Это ошибка, которую я получаю после выполнения указанной выше команды.

/dbfs/FileStore/tables/dev/run_language_modeling.py in <module>
   279 
   280 if __name__ == "__main__":
--> 281     main()

/dbfs/FileStore/tables/dev/run_language_modeling.py in main()
   243             else None
   244         )
--> 245         trainer.train(model_path=model_path)
   246         trainer.save_model()
   247         # For convenience, we also re-save the tokenizer to the same directory,

/databricks/python/lib/python3.7/site-packages/transformers/trainer.py in train(self, model_path)
   497                     continue
   498 
--> 499                 tr_loss += self._training_step(model, inputs, optimizer)
   500 
   501                 if (step + 1) % self.args.gradient_accumulation_steps == 0 or (

/databricks/python/lib/python3.7/site-packages/transformers/trainer.py in _training_step(self, model, inputs, optimizer)
   620             inputs["mems"] = self._past
   621 
--> 622         outputs = model(**inputs)
   623         loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
   624 

/databricks/python/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
   548             result = self._slow_forward(*input, **kwargs)
   549         else:
--> 550             result = self.forward(*input, **kwargs)
   551         for hook in self._forward_hooks.values():
   552             hook_result = hook(self, input, result)

/databricks/python/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py in forward(self, *inputs, **kwargs)
   153             return self.module(*inputs[0], **kwargs[0])
   154         replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
--> 155         outputs = self.parallel_apply(replicas, inputs, kwargs)
   156         return self.gather(outputs, self.output_device)
   157 

/databricks/python/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py in parallel_apply(self, replicas, inputs, kwargs)
   163 
   164     def parallel_apply(self, replicas, inputs, kwargs):
--> 165         return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
   166 
   167     def gather(self, outputs, output_device):

/databricks/python/lib/python3.7/site-packages/torch/nn/parallel/parallel_apply.py in parallel_apply(modules, inputs, kwargs_tup, devices)
    83         output = results[i]
    84         if isinstance(output, ExceptionWrapper):
---> 85             output.reraise()
    86         outputs.append(output)
    87     return outputs

/databricks/python/lib/python3.7/site-packages/torch/_utils.py in reraise(self)
   393             # (https://bugs.python.org/issue2651), so we work around it.
   394             msg = KeyErrorMessage(msg)
--> 395         raise self.exc_type(msg)

RuntimeError: Caught RuntimeError in replica 0 on device 0.
Original Traceback (most recent call last):
 File "/databricks/python/lib/python3.7/site-packages/torch/nn/parallel/parallel_apply.py", line 60, in _worker
   output = module(*input, **kwargs)
 File "/databricks/python/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__
   result = self.forward(*input, **kwargs)
 File "/databricks/python/lib/python3.7/site-packages/transformers/modeling_roberta.py", line 239, in forward
   output_hidden_states=output_hidden_states,
 File "/databricks/python/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__
   result = self.forward(*input, **kwargs)
 File "/databricks/python/lib/python3.7/site-packages/transformers/modeling_bert.py", line 762, in forward
   output_hidden_states=output_hidden_states,
 File "/databricks/python/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__
   result = self.forward(*input, **kwargs)
 File "/databricks/python/lib/python3.7/site-packages/transformers/modeling_bert.py", line 439, in forward
   output_attentions,
 File "/databricks/python/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__
   result = self.forward(*input, **kwargs)
 File "/databricks/python/lib/python3.7/site-packages/transformers/modeling_bert.py", line 371, in forward
   hidden_states, attention_mask, head_mask, output_attentions=output_attentions,
 File "/databricks/python/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__
   result = self.forward(*input, **kwargs)
 File "/databricks/python/lib/python3.7/site-packages/transformers/modeling_bert.py", line 315, in forward
   hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions,
 File "/databricks/python/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__
   result = self.forward(*input, **kwargs)
 File "/databricks/python/lib/python3.7/site-packages/transformers/modeling_bert.py", line 240, in forward
   attention_scores = attention_scores / math.sqrt(self.attention_head_size)
RuntimeError: CUDA out of memory. Tried to allocate 96.00 MiB (GPU 0; 11.17 GiB total capacity; 10.68 GiB already allocated; 95.31 MiB free; 10.77 GiB reserved in total by PyTorch)```

Please how do I resolve this

1 ответ

Ошибка нехватки памяти, скорее всего, вызвана невыполнением очистки сеанса и / или освобождением графического процессора.

Из аналогичной проблемы Github.

Это из-за того, что мини-пакет данных не помещается в память графического процессора. Просто уменьшите размер партии. Когда я установил размер пакета = 256 для набора данных cifar10, я получил ту же ошибку; Потом ставлю размер партии = 128, решается.