Наивный байесовский алгоритм с нуля на python с результатом `` Процесс завершен с кодом выхода 0 ''
Я новичок в PyCharm, и я нашел в Интернете два кода по методам классификации с использованием наивной байесовской классификации. этот код не содержит ошибки. но я вижу результат, хотя используюprint()
. Я использую набор данных библиотеки iris. и это мой код
import csv
import math
import random
import pandas as pd
from sklearn import datasets
def loadCsv(filename):
#lines = csv.reader(open(r'E:\KULIAH\TUGAS AKHIR\MachineLearning\kananniih.csv'))
lines = datasets.load_iris()
print(lines)
dataset = list(lines)
for i in range(len(dataset)):
dataset[i] = [float(x) for x in dataset[i]]
return dataset;
#spliit dataa
def splitDataset(dataset, splitRatio):
trainSize = int(len(dataset) * splitRatio)
trainSet = []
copy = list(dataset)
while len(trainSet) < trainSize:
index = random.randrange(len(copy))
trainSet.append(copy.pop(index))
return [trainSet, copy]
#dikumpulkan berdasar kelas
def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
#hitung mean
def mean(numbers):
return sum(numbers)/float(len(numbers))
#hitung standard deviasi
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
#hitung jumlah dataset
def summarize(dataset):
summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
del summaries[-1]
return summaries
#hitung atribut tiap kelas
def summarizeByClass(dataset):
separated = separateByClass(dataset)
summaries = {}
for classValue, instances in separated.items():
summaries[classValue] = summarize(instances)
return summaries
#hitung Gaussian PDF
def calculateProbability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1/(math.sqrt(2*math.pi)*stdev))*exponent
#hitung probabilitas kelas
def calculateClassProbabilities(summaries, inputVector):
probabilities = {}
for classValue, classSummaries in summaries.items():
probabilities[classValue] = 1
for i in range(len(classSummaries)):
mean, stdev = classSummaries[i]
x = inputVector[i]
probabilities[classValue] *= calculateProbability(x, mean, stdev)
return probabilities
#make prediction
def predict(summaries, inputVector):
probabilities = calculateClassProbabilities(summaries, inputVector)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.items():
if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue
return bestLabel
#make prediction
def getPredictions(summaries, testSet):
predictions = []
for i in range(len(testSet)):
result = predict(summaries, testSet[i])
predictions.append(result)
return predictions
#get accurancy
def getAccuracy(testSet, predictions):
correct = 0
for i in range(len(testSet)):
if testSet[i][-1] == predictions[i]:
correct += 1
return (correct / float(len(testSet))) * 100.0
def main():
filename = datasets.load_iris()
splitRatio = 0.67
dataset = loadCsv(filename)
print(dataset)
trainingSet, testSet = splitDataset(dataset, splitRatio)
print(('Split {0} rows into train={1} and test={2} rows').format(len(dataset), len(trainingSet),len(testSet)))
# prepare model
summaries = summarizeByClass(trainingSet)
# test model
predictions = getPredictions(summaries, testSet)
accuracy = getAccuracy(testSet, predictions)
print(('Accuracy: {0}%').format(accuracy))
main()
не могли бы вы мне помочь, пожалуйста? Очень признателен! С уважением, Элия