Отчет о тренировке смешанной точности RET_CHECK, ShapeUtil::Equal(first_reduce->shape(), inst->shape())
Новая настройка: 2x2080ti Драйвер Nvidia: 430 Cuda 10.0 Cudnn 7.6 Tensorflow 1.13.1
Старая настройка: 2x1080ti Nvidia драйвер:410 Cuda 9.0 Tensorflow 1.10
Я реализовал модель для сегментации, она может быть обучена под FP32 или смешанной точностью (следуя инструкции здесь http://on-demand.gputechconf.com/gtc-taiwan/2018/pdf/5-1_Internal%20Speaker_Michael%20Carilli_PDF%20For%20Sharing.pdf).
Он работает в старой настройке, но 1080ti не полностью поддерживает float16, поэтому я перешел на новую настройку.
В новой настройке FP32 работает нормально, но смешанная точность всегда имеет ошибку: tenorflow.python.framework.errors_impl.InternalError: ошибка RET_CHECK (тензор потока / компилятор /xla/service/gpu/ir_emitter_unnested.cc:3171) ShapeUtil::Equal(first_reduce) ->shape(), inst->shape())
Структура модели:
with tf.name_scope('Inputs'):
is_training_tensor = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
input_tensor = tf.placeholder(dtype=tf.float32, shape=set_shape(hypes, hypes['arch']['num_channels']),
name='inputs')
if hypes['arch']['half_precision']:
input_tensor = tf.cast(input_tensor, tf.float16)
binary_label_tensors = []
for label in hypes['data']['predict_labels']:
binary_label_tensor = tf.placeholder(dtype=tf.int64, shape=set_shape(hypes, 1, is_input=False), name=label)
binary_label_tensors.append(binary_label_tensor)
tower_grads = []
loss_dicts = []
eval_dicts = []
with tf.name_scope('Optimizer'):
opt, step = create_optimizer_wrapper(hypes)
with tf.variable_scope('ModelCrossGPUs', reuse=tf.AUTO_REUSE, custom_getter=float32_variable_storage_getter
if hypes['arch']['half_precision'] else None):
for i in range(gpus):
with tf.device('/device:GPU:{}'.format(i)):
with tf.name_scope('GPU_{}'.format(i)):
# restructure input
input_tensor_gpu = input_tensor[i * batch_size: (i + 1) * batch_size]
binary_label_tensors_gpu = []
for tensor in binary_label_tensors:
binary_label_tensors_gpu.append(tensor[i * batch_size: (i + 1) * batch_size])
# instantiate the network
net_module = getattr(importlib.import_module('ml.projects.xxx.nets.' +
hypes['arch']['net']), 'inference')
inference_net = net_module(hypes,
input_tensor=input_tensor_gpu,
is_training_tensor=is_training_tensor)
if hypes['arch']['half_precision']:
logitss = [tf.cast(logits, tf.float32) for logits in inference_net['logitss']]
else:
logitss = inference_net['logitss']
binary_seg_rets = inference_net['binary_seg_rets']
with tf.name_scope('Loss'):
loss_dict = loss.multi_binary_segmentation_loss(hypes, input_tensor_gpu,
binary_label_tensors_gpu, logitss)
loss_dict.update({'total_loss': loss.consolidation_loss(loss_dict['binary_seg_loss'])})
loss_dicts.append(loss_dict)
with tf.name_scope('Evaluation'):
evaluator = eval.Evaluator()
eval_dict = evaluator.eval_logits(hypes, input_tensor_gpu, binary_label_tensors_gpu, logitss)
eval_dicts.append(eval_dict)
with tf.name_scope('Gradients'):
grads = single_gradients(hypes, loss_dict['total_loss'], opt)
tower_grads.append(grads)
with tf.name_scope('Summary_Train/'):
with tf.name_scope('Summary_Train_{}'.format(i)):
add_tensor_to_summary(hypes, input_tensor_gpu, binary_label_tensors_gpu, inference_net)
for grad in grads:
tf.summary.histogram("Gradient/" + grad.name.split(':')[0], grad)
with tf.name_scope('Summary_Eval/'):
with tf.name_scope('Summary_Eval_{}'.format(i)):
add_tensor_to_summary(hypes, input_tensor_gpu, binary_label_tensors_gpu, inference_net)
with tf.name_scope('Optimizer'):
grads = average_gradients(tower_grads)
train_op = global_optimizer(grads, opt, step)
Ошибки происходят здесь:
binary_label = tf.multiply(binary_label, mask)
is_binary_label_one = tf.equal(binary_label, 1)
is_out_one = tf.equal(out, 1)
# Ground truth
t = tf.count_nonzero(binary_label, dtype=tf.int64)
# Prediction
p = tf.count_nonzero(out, dtype=tf.int64)
# Union
u = tf.count_nonzero(tf.logical_or(is_binary_label_one, is_out_one))
# Intersection
i = tf.count_nonzero(tf.logical_and(is_binary_label_one, is_out_one))
# Valid mask region
m = tf.count_nonzero(mask)
# correct prediction including both positive and negative prediction
c = tf.count_nonzero(tf.logical_and(tf.equal(binary_label, out), tf.equal(mask, 1)))
one = tf.constant(1.0, dtype=tf.float64)
accuracy = tf.cond(tf.equal(m, 0), lambda: one, lambda: c / m)
precision = tf.cond(tf.equal(p, 0), lambda: one, lambda: i / p)
recall = tf.cond(tf.equal(t, 0), lambda: one, lambda: i / t)
iou = tf.cond(tf.equal(u, 0), lambda: one, lambda: i / u)
f1 = tf.cond(tf.equal(precision + recall, 0), lambda: one, lambda: 2 * precision * recall /
(precision + recall))
Ошибка:
* Begin stack trace
tensorflow::Status xla::HloInstruction::Visit<xla::HloInstruction*>(xla::DfsHloVisitorBase<xla::HloInstruction*>*)
tensorflow::Status xla::HloInstruction::Accept<xla::HloInstruction*>(xla::DfsHloVisitorBase<xla::HloInstruction*>*, bool, bool)
tensorflow::Status xla::HloComputation::Accept<xla::HloInstruction*>(xla::DfsHloVisitorBase<xla::HloInstruction*>*) const
xla::gpu::NVPTXCompiler::RunBackend(std::unique_ptr<xla::HloModule, std::default_delete<xla::HloModule> >, stream_executor::StreamExecutor*, xla::DeviceMemoryAllocator*)
xla::Service::BuildExecutable(xla::HloModuleProto const&, std::unique_ptr<xla::HloModuleConfig, std::default_delete<xla::HloModuleConfig> >, xla::Backend*, stream_executor::StreamExecutor*, xla::DeviceMemoryAllocator*
tensorflow::XlaCompilationCache::BuildExecutable(tensorflow::XlaCompiler::Options const&, tensorflow::XlaCompiler::CompilationResult const&, std::unique_ptr<xla::LocalExecutable, std::default_delete<xla::LocalExecutable> >*)
tensorflow::XlaCompilationCache::CompileImpl(tensorflow::XlaCompiler::Options const&, tensorflow::NameAttrList const&, absl::Span<tensorflow::XlaCompiler::Argument const>, std::function<tensorflow::Status (tensorflow::XlaCompiler*, tensorflow::XlaCompiler::CompilationResult*)> const&, absl::optional<long long>, tensorflow::XlaCompiler::CompilationResult const**, xla::LocalExecutable**)
tensorflow::XlaCompilationCache::Compile(tensorflow::XlaCompiler::Options const&, tensorflow::NameAttrList const&, absl::Span<tensorflow::XlaCompiler::Argument const>, tensorflow::XlaCompiler::CompileOptions const&, tensorflow::XlaCompilationCache::CompileMode, tensorflow::XlaCompiler::CompilationResult const**, xla::LocalExecutable**)
tensorflow::XlaCompileOp::Compute(tensorflow::OpKernelContext*)
tensorflow::BaseGPUDevice::ComputeHelper(tensorflow::OpKernel*, tensorflow::OpKernelContext*)
tensorflow::BaseGPUDevice::Compute(tensorflow::OpKernel*, tensorflow::OpKernelContext*)
Eigen::ThreadPoolTempl<tensorflow::thread::EigenEnvironment>::WorkerLoop(int) std::_Function_handler<void (), tensorflow::thread::EigenEnvironment::CreateThread(std::function<void ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&)
clone
*End stack trace
2019-06-03 21:16:54.599314: W tensorflow/core/framework/op_kernel.cc:1401]
OP_REQUIRES failed at xla_ops.cc:429 : Internal: RET_CHECK failure (tensorflow/compiler/xla/service/gpu/ir_emitter_unnested.cc:3171) ShapeUtil::Equal(first_reduce->shape(), inst->shape())
Traceback (most recent call last):
File "/home/usr/workspace/virtualenvs/xxx/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1334, in _do_call
return fn(*args)
File "/home/usr/workspace/virtualenvs/xxx/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1319, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/home/usr/workspace/virtualenvs/xxx/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1407, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InternalError: RET_CHECK failure (tensorflow/compiler/xla/service/gpu/ir_emitter_unnested.cc:3171) ShapeUtil::Equal(first_reduce->shape(), inst->shape())
[[{{node cluster_26_1/xla_compile}}]]
[[{{node ModelCrossGPUs/GPU_0/Evaluation/cond_2/Merge}}]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/usr/pycharm/pycharm-community-2018.3.5/helpers/pydev/pydevd.py", line 1741, in <module>
main()
File "/home/usr/pycharm/pycharm-community-2018.3.5/helpers/pydev/pydevd.py", line 1735, in main
globals = debugger.run(setup['file'], None, None, is_module)
File "/home/usr/pycharm/pycharm-community-2018.3.5/helpers/pydev/pydevd.py", line 1135, in run
pydev_imports.execfile(file, globals, locals) # execute the script
File "/home/usr/pycharm/pycharm-community-2018.3.5/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/home/usr/workspace/projects/xxx/train.py", line 201, in <module>
tf.app.run()
File "/home/usr/workspace/virtualenvs/xxx/lib/python3.6/site-packages/tensorflow/python/platform/app.py", line 125, in run
_sys.exit(main(argv))
File "/home/usr/workspace/projects/xxx/train.py", line 197, in main
train_net(hypes, graph, session, run_options, itr_init)
File "/home/usr/workspace/projects/xxx/train.py", line 107, in train_net
run_metadata=run_options['metadata'])
File "/home/usr/workspace/virtualenvs/xxx/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/home/usr/workspace/virtualenvs/xxx/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1152, in _run
feed_dict_tensor, options, run_metadata)
File "/home/usr/workspace/virtualenvs/xxx/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1328, in _do_run
run_metadata)
File "/home/usr/workspace/virtualenvs/xxx/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1348, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: RET_CHECK failure (tensorflow/compiler/xla/service/gpu/ir_emitter_unnested.cc:3171) ShapeUtil::Equal(first_reduce->shape(), inst->shape())
[[{{node cluster_26_1/xla_compile}}]]
[[node ModelCrossGPUs/GPU_0/Evaluation/cond_2/Merge (defined at /home/usr/workspace/projects/xxx/utils/eval.py:84) ]]
1 ответ
После включения XLA для функции тензорного потока у меня был аналогичный код ошибки «RET_CHECK FAILURE»:
tensorflow.python.framework.errors_impl.InternalError: RET_CHECK failure (tensorflow/compiler/jit/xla_launch_util.cc:586) input->dtype() != DT_RESOURCE [Op:__inference_tf_train_3912]
За исключением того, что в моем случае это намекало на вызов логического вывода, поэтому я закомментировал все после ошибочной строки кода, а затем, к моему удивлению, получил более явное и полезное сообщение об ошибке.
комментирование строк кода после вызова логического вывода
@tf.function(experimental_compile=True)
def train():
...
with tf.GradientTape() as tape:
train_batch_y_pred = m(xx, training=True)
#loss_value = tf.losses.BinaryCrossentropy()(yy, train_batch_y_pred)
#grads = tape.gradient(loss_value, m.trainable_weights)
#opt.apply_gradients(zip(grads, m.trainable_weights))
новое сообщение об ошибке:
Can''t find libdevice directory ${CUDA_DIR}/nvvm/libdevice. This may result in compilation or runtime failures, if the program we try to run uses routines from libdevice.
Оказывается, XLA использовал переменную среды из предыдущей и удаленной установки cuda. Поскольку этот код ошибки может скрывать другие предыдущие ошибки, я думаю, что этот ответ может быть полезен, хотя напрямую не связан с OP.
полный дамп ошибки, перед комментированием
2021-05-28 05:36:34.723223: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x1db60391100 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2021-05-28 05:36:34.723316: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA GeForce RTX 2080 Ti, Compute Capability 7.5
2021-05-28 05:36:34.978528: E tensorflow/compiler/xla/status_macros.cc:56] Internal: RET_CHECK failure (tensorflow/compiler/jit/xla_launch_util.cc:586) input->dtype() != DT_RESOURCE
0x00007FFF4E316C75 tensorflow::CurrentStackTrace
0x00007FFF4DA89B97 xla::status_macros::MakeErrorStream::Impl::GetStatus
0x00007FFF4DA8A028 xla::status_macros::MakeErrorStream::Impl::GetStatus
0x00007FFF4DA89A5C xla::status_macros::MakeErrorStream::Impl::GetStatus
0x00007FFF310EEDE6 Eigen::TensorEvaluator<Eigen::TensorMap<Eigen::Tensor<tensorflow::ResourceHandle,5,1,__int64>,16,Eigen::MakePointer>,Eigen::DefaultDevice>::coeffRef
0x00007FFF310D6B93 absl::lts_2020_02_25::optional_internal::optional_data_dtor_base<tensorflow::Tensor,0>::~optional_data_dtor_base<tensorflow::Tensor,0>
0x00007FFF310D880C absl::lts_2020_02_25::optional_internal::optional_data_dtor_base<tensorflow::Tensor,0>::~optional_data_dtor_base<tensorflow::Tensor,0>
0x00007FFF4B88F3FC google::protobuf::RepeatedPtrField<tensorflow::InterconnectLink>::Add
0x00007FFF4B4E6075 tensorflow::EagerExecutor::~EagerExecutor
0x00007FFF4B4AEF91 google::protobuf::RepeatedPtrField<tensorflow::RunMetadata_FunctionGraphs>::Add
0x00007FFF4B4B55A5 google::protobuf::RepeatedPtrField<tensorflow::RunMetadata_FunctionGraphs>::Add
0x00007FFF4B4E310F tensorflow::EagerExecutor::~EagerExecutor
0x00007FFF4B4AD2FC google::protobuf::RepeatedPtrField<tensorflow::RunMetadata_FunctionGraphs>::Add
0x00007FFF4B4B0149 google::protobuf::RepeatedPtrField<tensorflow::RunMetadata_FunctionGraphs>::Add
0x00007FFF4B4AEC2F google::protobuf::RepeatedPtrField<tensorflow::RunMetadata_FunctionGraphs>::Add
0x00007FFF4B4A2CC1 absl::lts_2020_02_25::Span<tensorflow::Tensor const >::end
0x00007FFF3103F185 TFE_Execute
0x00007FFF30FD1790 TFE_Py_ExecuteCancelable
0x00007FFF77D34FB1 (unknown)
0x00007FFF77D2632B (unknown)
0x00007FFF77D09A06 (unknown)
0x00007FFF77D3A466 (unknown)
0x00007FFF886E3CC4 PyCFunction_Call
0x00007FFF886C4DCA PyEval_EvalFrameDefault
0x00007FFF886BE618 PyEval_EvalCodeWithName
0x00007FFF886BFD5F PyFunction_Vectorcall
0x00007FFF886C6B9E PyEval_EvalFrameDefault
0x00007FFF886BE618 PyEval_EvalCodeWithName
0x00007FFF886C5675 PyEval_EvalFrameDefault
0x00007FFF886BE618 PyEval_EvalCodeWithName
0x00007FFF886C5675 PyEval_EvalFrameDefault
0x00007FFF886C2D24 PyEval_EvalFrameDefault
0x00007FFF886BE618 PyEval_EvalCodeWithName
0x00007FFF886C39B2 PyEval_EvalFrameDefault
0x00007FFF886BE618 PyEval_EvalCodeWithName
0x00007FFF886BFD5F PyFunction_Vectorcall
0x00007FFF886B3061 PyObject_FastCallDict
0x00007FFF887B5CA6 PyObject_Call_Prepend
0x00007FFF887B5C15 PyNumber_InPlaceMultiply
0x00007FFF886C5C78 PyEval_EvalFrameDefault
0x00007FFF886C2C3B PyEval_EvalFrameDefault
0x00007FFF886C2C3B PyEval_EvalFrameDefault
0x00007FFF886C2C3B PyEval_EvalFrameDefault
0x00007FFF886C2C3B PyEval_EvalFrameDefault
0x00007FFF886BE618 PyEval_EvalCodeWithName
0x00007FFF886D315B PyEval_EvalCodeEx
0x00007FFF886D30B9 PyEval_EvalCode
0x00007FFF886D2AC6 PyArena_New
0x00007FFF886D2A55 PyArena_New
0x00007FFF8877A1A3 Py_wfopen
0x00007FFF887785A8 PyUnicode_CompareWithASCIIString
0x00007FFF88777837 PyRun_SimpleFileExFlags
0x00007FFF888973FF PyRun_AnyFileExFlags
0x00007FFF88846453 Py_gitversion
0x00007FFF8877B494 Py_RunMain
0x00007FFF8877B31D Py_RunMain
0x00007FFF8877AECD Py_Main
0x00007FF66CFD1258 (unknown)
0x00007FFFBEC27034 BaseThreadInitThunk
0x00007FFFC023D0D1 RtlUserThreadStart
2021-05-28 05:36:34.980650: W tensorflow/core/framework/op_kernel.cc:1763] OP_REQUIRES failed at xla_ops.cc:238 : Internal: RET_CHECK failure (tensorflow/compiler/jit/xla_launch_util.cc:586) input->dtype() != DT_RESOURCE
Traceback (most recent call last):
File "C:/Users/Cfirm/PycharmProjects/NNProj/lstm_classification_double.py", line 364, in <module>
start()
File "C:/Users/Cfirm/PycharmProjects/NNProj/lstm_classification_double.py", line 344, in start
model_long, o = train_model(timeserie, True)
File "C:/Users/Cfirm/PycharmProjects/NNProj/lstm_classification_double.py", line 158, in train_model
model = m1 = train_layered_model(i, o1, e, 60, timeserie, direction, math.log(101.0 / 100.0))
File "C:/Users/Cfirm/PycharmProjects/NNProj/lstm_classification_double.py", line 146, in train_layered_model
train(m, x, y, epochs, batch_size)
File "C:/Users/Cfirm/PycharmProjects/NNProj/lstm_classification_double.py", line 114, in train
_concrete_fn_train(x, y)
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\function.py", line 1669, in __call__
return self._call_impl(args, kwargs)
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\function.py", line 1678, in _call_impl
return self._call_with_structured_signature(args, kwargs,
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\function.py", line 1759, in _call_with_structured_signature
return self._call_flat(
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\function.py", line 1918, in _call_flat
return self._build_call_outputs(self._inference_function.call(
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\function.py", line 555, in call
outputs = execute.execute(
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\execute.py", line 59, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.InternalError: RET_CHECK failure (tensorflow/compiler/jit/xla_launch_util.cc:586) input->dtype() != DT_RESOURCE [Op:__inference_tf_train_3912]
Process finished with exit code 1
полный дамп ошибки после комментирования
2021-05-28 05:55:49.033829: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x1fddbb09770 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2021-05-28 05:55:49.033924: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA GeForce RTX 2080 Ti, Compute Capability 7.5
2021-05-28 05:55:49.092926: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
2021-05-28 05:55:49.463671: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
2021-05-28 05:55:49.512861: I tensorflow/core/platform/windows/subprocess.cc:308] SubProcess ended with return code: 0
2021-05-28 05:55:49.601997: I tensorflow/core/platform/windows/subprocess.cc:308] SubProcess ended with return code: 0
2021-05-28 05:55:49.697453: I tensorflow/core/platform/windows/subprocess.cc:308] SubProcess ended with return code: 0
2021-05-28 05:55:49.740538: W tensorflow/compiler/xla/service/gpu/nvptx_compiler.cc:70] Can't find libdevice directory ${CUDA_DIR}/nvvm/libdevice. This may result in compilation or runtime failures, if the program we try to run uses routines from libdevice.
2021-05-28 05:55:49.740661: W tensorflow/compiler/xla/service/gpu/nvptx_compiler.cc:71] Searched for CUDA in the following directories:
2021-05-28 05:55:49.740724: W tensorflow/compiler/xla/service/gpu/nvptx_compiler.cc:74] ./cuda_sdk_lib
2021-05-28 05:55:49.740772: W tensorflow/compiler/xla/service/gpu/nvptx_compiler.cc:74] C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.0
2021-05-28 05:55:49.740837: W tensorflow/compiler/xla/service/gpu/nvptx_compiler.cc:74] .
2021-05-28 05:55:49.740877: W tensorflow/compiler/xla/service/gpu/nvptx_compiler.cc:76] You can choose the search directory by setting xla_gpu_cuda_data_dir in HloModule's DebugOptions. For most apps, setting the environment variable XLA_FLAGS=--xla_gpu_cuda_data_dir=/path/to/cuda will work.
2021-05-28 05:55:49.742075: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:324] libdevice is required by this HLO module but was not found at ./libdevice.10.bc
2021-05-28 05:55:49.742459: I tensorflow/compiler/jit/xla_compilation_cache.cc:333] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
2021-05-28 05:55:49.745001: W tensorflow/core/framework/op_kernel.cc:1763] OP_REQUIRES failed at xla_ops.cc:238 : Internal: libdevice not found at ./libdevice.10.bc
Traceback (most recent call last):
File "C:/Users/Cfirm/PycharmProjects/NNProj/lstm_classification_double.py", line 364, in <module>
start()
File "C:/Users/Cfirm/PycharmProjects/NNProj/lstm_classification_double.py", line 344, in start
model_long, o = train_model(timeserie, True)
File "C:/Users/Cfirm/PycharmProjects/NNProj/lstm_classification_double.py", line 158, in train_model
model = m1 = train_layered_model(i, o1, e, 60, timeserie, direction, math.log(101.0 / 100.0))
File "C:/Users/Cfirm/PycharmProjects/NNProj/lstm_classification_double.py", line 146, in train_layered_model
train(m, x, y, epochs, batch_size)
File "C:/Users/Cfirm/PycharmProjects/NNProj/lstm_classification_double.py", line 114, in train
_concrete_fn_train(x, y)
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\function.py", line 1669, in __call__
return self._call_impl(args, kwargs)
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\function.py", line 1678, in _call_impl
return self._call_with_structured_signature(args, kwargs,
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\function.py", line 1759, in _call_with_structured_signature
return self._call_flat(
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\function.py", line 1918, in _call_flat
return self._build_call_outputs(self._inference_function.call(
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\function.py", line 555, in call
outputs = execute.execute(
File "C:\Users\Cfirm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\eager\execute.py", line 59, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.InternalError: libdevice not found at ./libdevice.10.bc [Op:__inference_tf_train_1439]
Process finished with exit code 1