Чтение tfRecord с отступом, onehot на парсере и VarLenFeature

Ниже приведен фрагмент кода генерации файла tfrecord, после которого я не могу написать функцию для извлечения этих значений с применением Padding в X & OneHot в Y и наряду с эпохой и пакетной итерацией в тензорном потоке с python.

def _int64_feature(value):
  return tf.train.Feature(int64_list=tf.train.Int64List(value=value))

writer = tf.python_io.TFRecordWriter('example.tfrecord')

xlist = [[1,2,3],[2,4]]
ylist = [[0,4],[1]]

if len(xlist) == len(ylist):
    for index,_ in enumerate(xlist):
        feature = {'x': _int64_feature(xlist[index]),
                   'y': _int64_feature(ylist[index])}
        example = tf.train.Example(features=tf.train.Features(feature=feature))
        writer.write(example.SerializeToString())
writer.close()

Над снимком находятся преобразованные данные, которые будут переданы в тензорную модель CNN.

0 ответов

Другие вопросы по тегам