Почему glmmTMP оценивает приблизительно половину значения для смешанной модели Максвелла Пуассона Конвея с нулевой раздувкой для имитированных данных

Я пытаюсь оценить параметр для смешанной модели Конвея Максвелла Пуассона. Я не понимаю, почему функция GlmmTMP дает приблизительно половинное значение для части с ненулевым эффектом и дает хорошие оценки для нулевой части и части дисперсии?

Например:- Фактическое значение для перехвата составляет 2,5, и я получаю 1,21 для sexfemale, фактическое значение равно 1,2, и я получаю 0,548342, пожалуйста, помогите мне в этой ситуации? Спасибо

#--------Simulation from ZICOMP mix lambda---------
library(COMPoissonReg)
library(glmmTMB)
set.seed(123)
n <- 100 # number of subjects
K <- 8 # number of measurements per subject
t_max <- 5 # maximum follow-up time

# we constuct a data frame with the design: 
# everyone has a baseline measurment, and then measurements at random follow-up times
DF_CMP <- data.frame(id = rep(seq_len(n), each = K),
                     time = c(replicate(n, c(0, sort(runif(K - 1, 0, t_max))))),
                     sex = rep(gl(2, n/2, labels = c("male", "female")), each = K))

# design matrices for the fixed and random effects non-zero part
X <- model.matrix(~ sex * time, data = DF_CMP)
Z <- model.matrix(~ 1, data = DF_CMP)
# design matrices for the fixed and random effects zero part
X_zi <- model.matrix(~ sex, data = DF_CMP)

betas <- c(2.5 , 1.2 , 2.3, -1.5) # fixed effects coefficients non-zero part
shape <- 2 
gammas <- c(-1.5, 0.9) # fixed effects coefficients zero part
D11 <- 0.5 # variance of random intercepts non-zero part

# we simulate random effects
b <- rnorm(n, sd = sqrt(D11))
# linear predictor non-zero part
eta_y <- as.vector(X %*% betas + rowSums(Z * b[DF_CMP$id,drop = FALSE]))
# linear predictor zero part
eta_zi <- as.vector(X_zi %*% gammas)
DF_CMP$CMP_y <- rzicmp(n * K, lambda = exp(eta_y), nu = shape, p = plogis(eta_zi))
hist(DF_CMP$CMP_y)
#------ estimation -------------
CMPzicmpm0 = glmmTMB(CMP_y~ sex*time + (1|id) , zi= ~ sex, data = DF_CMP, family=compois)

summary(CMPzicmpm0)
> summary(CMPzicmpm0)
 Family: compois  ( log )
Formula:          CMP_y ~ sex * time + (1 | id)
Zero inflation:         ~sex
Data: DF_CMP

     AIC      BIC   logLik deviance df.resid 
  4586.2   4623.7  -2285.1   4570.2      792 

Random effects:

Conditional model:
 Groups Name        Variance Std.Dev.
 id     (Intercept) 0.1328   0.3644  
Number of obs: 800, groups:  id, 100

Overdispersion parameter for compois family (): 0.557 

Conditional model:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)     1.217269   0.054297   22.42  < 2e-16 ***
sexfemale       0.548342   0.079830    6.87 6.47e-12 ***
time            1.151549   0.004384  262.70  < 2e-16 ***
sexfemale:time -0.735348   0.009247  -79.52  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Zero-inflation model:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.6291     0.1373 -11.866  < 2e-16 ***
sexfemale     0.9977     0.1729   5.771 7.89e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

0 ответов

Другие вопросы по тегам