Spark 2.0 DataSets groupByKey и разделить работу и безопасность типов

Я очень доволен Spark 2.0 DataSets из-за его безопасности во время компиляции. Но есть пара проблем, с которыми я не могу разобраться, я также не нашел хорошую документацию для этого.

Проблема № 1 - операция деления на агрегированном столбце. Рассмотрим приведенный ниже код. У меня есть DataSet[MyCaseClass], и я хотел сгруппировать ByKey для c1,c2,c3 и sum(c4) / 8. Приведенный ниже код хорошо работает, если я просто вычисляю сумма, но это дает ошибку времени компиляции для деления (8). Интересно, как я могу добиться следующего.

final case class MyClass (c1: String,
                          c2: String,
                          c3: String,
                          c4: Double)

    val myCaseClass: DataSet[MyCaseClass] = ??? // assume it's being loaded

    import sparkSession.implicits._
    import org.apache.spark.sql.expressions.scalalang.typed.{sum => typedSum}

     myCaseClass.
       groupByKey(myCaseClass =>
          (myCaseClass.c1, myCaseClass.c2, myCaseClass.c3)).
          agg(typedSum[MyCaseClass](_.c4).name("sum(c4)").
          divide(8)). //this is breaking with exception
       show()

Если я удаляю операцию.divide(8) и запускаю над командой, она выдает мне вывод ниже.

    +-----------+-------------+
    |        key|sum(c4)      |
    +-----------+-------------+
    |[A1,F2,S1]|         80.0|
    |[A1,F1,S1]|         40.0|  
    +-----------+-------------+

Проблема №2 - преобразование результата groupedByKey в другой типизированный DataFrame. Теперь вторая часть моей проблемы - я хочу снова вывести типизированный DataSet. Для этого у меня есть другой класс case (не уверен, нужен ли он), но я не уверен, как отобразить сгруппированный результат -

класс конечного случая AnotherClass(c1: строка, c2: строка, c3: строка, среднее значение: Double)

  myCaseClass.
           groupByKey(myCaseClass =>
              (myCaseClass.c1, myCaseClass.c2, myCaseClass.c3)).
              agg(typedSum[MyCaseClass](_.c4).name("sum(c4)")).
as[AnotherClass] //this is breaking with exception

но это снова не удается, за исключением того, что сгруппированный по ключевому результату не отображается напрямую в AnotherClass.

PS: любое другое решение для достижения выше, приветствуется.

1 ответ

Решение

Первая проблема может быть решена путем использования типизированных столбцов до конца (KeyValueGroupedDataset.agg надеется TypedColumn(-s)) Вы можете определить результат агрегирования как:

val eight = lit(8.0)
  .as[Double]  // Not necessary

val sumByEight = typedSum[MyClass](_.c4)
  .divide(eight)
  .as[Double]  // Required
  .name("div(sum(c4), 8)")

и вставьте его в следующий код:

val myCaseClass = Seq(
  MyClass("a", "b", "c", 2.0),
  MyClass("a", "b", "c", 3.0)
).toDS

myCaseClass
  .groupByKey(myCaseClass => (myCaseClass.c1, myCaseClass.c2, myCaseClass.c3))
  .agg(sumByEight)

получить

+-------+---------------+
|    key|div(sum(c4), 8)|
+-------+---------------+
|[a,b,c]|          0.625|
+-------+---------------+

Вторая проблема - результат использования класса, который не соответствует форме данных. Правильное представление может быть:

case class AnotherClass(key: (String, String, String), sum: Double)

который используется с данными, определенными выше:

 myCaseClass
   .groupByKey(myCaseClass => (myCaseClass.c1, myCaseClass.c2, myCaseClass.c3))
   .agg(typedSum[MyClass](_.c4).name("sum"))
   .as[AnotherClass]

даст:

+-------+---+
|    key|sum|
+-------+---+
|[a,b,c]|5.0|
+-------+---+

но .as[AnotherClass] не нужно здесь, если Dataset[((String, String, String), Double)] приемлемо

Вы можете, конечно, пропустить все это и просто mapGroups (хотя не без потери производительности):

import shapeless.syntax.std.tuple._   // A little bit of shapeless

val tuples = myCaseClass
 .groupByKey(myCaseClass => (myCaseClass.c1, myCaseClass.c2, myCaseClass.c3))
 .mapGroups((group, iter) => group :+ iter.map(_.c4).sum)

с результатом

+---+---+---+---+   
| _1| _2| _3| _4|
+---+---+---+---+
|  a|  b|  c|5.0|
+---+---+---+---+

reduceGroups может быть лучшим вариантом:

myCaseClass
  .groupByKey(myCaseClass => (myCaseClass.c1, myCaseClass.c2, myCaseClass.c3))
  .reduceGroups((x, y) => x.copy(c4=x.c4 + y.c4))

с результатом Dataset:

+-------+-----------+    
|     _1|         _2|
+-------+-----------+
|[a,b,c]|[a,b,c,5.0]|
+-------+-----------+
Другие вопросы по тегам