3-канальный АЦП MSP430 для UART в MATLAB
Приведенный ниже код является модифицированной версией примера кода TI для многоканального преобразователя АЦП и связи UART. У меня возникают проблемы с запуском этого кода, и я не уверен, что я делаю неправильные советы и критику. Я полагаю, что это связано с попыткой объединить ISR UART и ISR ADC, а также мои выходные переменные...
#include <msp430.h>
#define Num_of_Results 8
unsigned int ADC_data0 = 0;
unsigned char LSB_data0 = 0;
unsigned char MSB_data0 = 0;
unsigned int ADC_data1 = 0;
unsigned char LSB_data1 = 0;
unsigned char MSB_data1 = 0;
unsigned int ADC_data2 = 0;
unsigned char LSB_data2 = 0;
unsigned char MSB_data2 = 0;
volatile unsigned int A0results[Num_of_Results];
volatile unsigned int A1results[Num_of_Results];
volatile unsigned int A2results[Num_of_Results];
//volatile unsigned int A3results[Num_of_Results];
int main(void)
{
WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer
P6SEL = 0x0F; // Enable A/D channel inputs
ADC12CTL0 = ADC12ON+ADC12MSC+ADC12SHT0_8; // Turn on ADC12, extend sampling time
// to avoid overflow of results
ADC12CTL1 = ADC12SHP+ADC12CONSEQ_3; // Use sampling timer, repeated sequence
ADC12MCTL0 = ADC12INCH_0; // ref+=AVcc, channel = A0
ADC12MCTL1 = ADC12INCH_1; // ref+=AVcc, channel = A1
ADC12MCTL2 = ADC12INCH_2+ADC12EOS; // ref+=AVcc, channel = A2
// ADC12MCTL3 = ADC12INCH_3+ADC12EOS; // ref+=AVcc, channel = A3, end seq.
ADC12IE = 0x04; // Enable ADC12IFG.3
ADC12CTL0 |= ADC12ENC; // Enable conversions
ADC12CTL0 |= ADC12SC; // Start convn - software trigger
//UART setup
P3SEL |= BIT3+BIT4; // P3.3,4 = USCI_A0 TXD/RXD
UCA0CTL1 |= UCSWRST; // **Put state machine in reset**
UCA0CTL1 |= UCSSEL_2; // SMCLK
UCA0BR0 = 9; // 1MHz 115200 (see User's Guide)
UCA0BR1 = 0; // 1MHz 115200
UCA0MCTL |= UCBRS_1 + UCBRF_0; // Modulation UCBRSx=1, UCBRFx=0
UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
UCA0IE |= UCRXIE; // Enable USCI_A0 RX interrupt
while (1) //tell adc to take a reading
{
ADC12CTL0 |= ADC12SC; // Start sampling/conversion
__bis_SR_register(LPM0_bits + GIE); // LPM0, ADC12_ISR will force exit
MSB_data0 = (unsigned char)(ADC_data0>>8);
LSB_data0 = (unsigned char)ADC_data0;
MSB_data1 = (unsigned char)(ADC_data1>>8);
LSB_data1 = (unsigned char)ADC_data1;
MSB_data2 = (unsigned char)(ADC_data2>>8);
LSB_data2 = (unsigned char)ADC_data2;
// if (ADC_data >= 0x7ff) // ADC12MEM = A0 > 0.5AVcc? (greater than 50% of scale, if it is led on, else led off)
// P1OUT |= BIT0; // P1.0 = 1
// else
// P1OUT &= ~BIT0; // P1.0 = 0
__no_operation(); // For debugger
} // For debugger
}
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=ADC12_VECTOR
__interrupt void ADC12ISR (void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_VECTOR))) ADC12ISR (void)
#else
#error Compiler not supported!
#endif
{
static unsigned int index = 0;
switch(__even_in_range(ADC12IV,34))
{
case 0: break; // Vector 0: No interrupt
case 2:
if (UCA0RXBUF ==82){ //82 decimal is R in ASCII
while (!(UCA0IFG&UCTXIFG)); // USCI_A0 TX buffer ready?
UCA0TXBUF = LSB_data0;
//UCA0TXBUF = UCA0RXBUF; // TX -> RXed character
while (!(UCA0IFG&UCTXIFG));
UCA0TXBUF = MSB_data0;
}
__no_operation();
break; // Vector 2: ADC overflow
case 4: break; // Vector 4: ADC timing overflow
case 6: break; // Vector 6: ADC12IFG0
case 8: break; // Vector 8: ADC12IFG1
case 10: // Vector 10: ADC12IFG2
A0results[index] = ADC12MEM0; // Move A0 results, IFG is cleared
A1results[index] = ADC12MEM1; // Move A1 results, IFG is cleared
A2results[index] = ADC12MEM2; // Move A2 results, IFG is cleared
//A3results[index] = ADC12MEM3; // Move A3 results, IFG is cleared
A0results[index] = ADC_data0;
A1results[index] = ADC_data1;
A2results[index] = ADC_data2;
index++; // Increment results index, modulo; Set Breakpoint1 here
if (index == 4)
{
(index = 0);
}
case 12: // Vector 12: ADC12IFG3
// A0results[index] = ADC12MEM0; // Move A0 results, IFG is cleared
// A1results[index] = ADC12MEM1; // Move A1 results, IFG is cleared
// A2results[index] = ADC12MEM2; // Move A2 results, IFG is cleared
//A3results[index] = ADC12MEM3; // Move A3 results, IFG is cleared
// index++; // Increment results index, modulo; Set Breakpoint1 here
// if (index == 4)
// {
// (index = 0);
// }
break;
case 14: break; // Vector 14: ADC12IFG4
case 16: break; // Vector 16: ADC12IFG5
case 18: break; // Vector 18: ADC12IFG6
case 20: break; // Vector 20: ADC12IFG7
case 22: break; // Vector 22: ADC12IFG8
case 24: break; // Vector 24: ADC12IFG9
case 26: break; // Vector 26: ADC12IFG10
case 28: break; // Vector 28: ADC12IFG11
case 30: break; // Vector 30: ADC12IFG12
case 32: break; // Vector 32: ADC12IFG13
case 34: break; // Vector 34: ADC12IFG14
default: break;
}
}