Spark работа метания NPE
В работе Spark я читаю из Kafka и после некоторых вычислений я сохраняю данные в Cassandra.
Исходный код
import static com.datastax.spark.connector.japi.CassandraJavaUtil.javaFunctions;
import static com.datastax.spark.connector.japi.CassandraJavaUtil.mapToRow;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.datastax.spark.connector.japi.CassandraRow;
import com.datastax.spark.connector.japi.rdd.CassandraTableScanJavaRDD;
import com.edureka.capstone.Customer;
import com.edureka.capstone.FileProperties;
import com.twitter.bijection.Injection;
import com.twitter.bijection.avro.GenericAvroCodecs;
import kafka.serializer.StringDecoder;
import scala.Tuple2;
import org.apache.spark.streaming.Duration;
public class SparkStreamingCustomerJob {
private final static Logger LOGGER = LoggerFactory.getLogger(SparkStreamingCustomerJob.class);
private static SparkConf conf = null;
private static Map<String, String> kafkaParams = new HashMap<>();
private static JavaStreamingContext ssc = null;
static {
Properties prop = FileProperties.properties;
if (Boolean.parseBoolean(prop.get("localmode").toString())) {
conf = new SparkConf().setMaster("local[*]");
} else {
conf = new SparkConf();
}
conf.setAppName(SparkStreamingCustomerJob.class.getName());
conf.set("spark.cassandra.connection.host", prop.get("com.smcc.app.cassandra.host").toString());
if (prop.get("spark.cassandra.auth.username") != null) {
conf.set("spark.cassandra.auth.username", prop.get("spark.cassandra.auth.username").toString());
conf.set("spark.cassandra.auth.password", prop.get("spark.cassandra.auth.password").toString());
} else {
conf.set("hadoop.home.dir", "/");
}
conf.setAppName(SparkStreamingCardJob.class.getName());
kafkaParams.put("metadata.broker.list", prop.get("metadata.broker.list").toString());
kafkaParams.put("auto.offset.reset", prop.get("auto.offset.reset").toString());
kafkaParams.put("group.id", prop.get("group.id").toString());
kafkaParams.put("enable.auto.commit", prop.get("enable.auto.commit").toString());
}
static VoidFunction<Tuple2<String, String>> mapFunc = new VoidFunction<Tuple2<String, String>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, String> arg0) {
try {
Schema.Parser parser = new Schema.Parser();
Schema schema = parser.parse(FileProperties.CUSTOMER_AVRO);
Injection<GenericRecord, String> recordInjection = GenericAvroCodecs.toJson(schema);
GenericRecord record = recordInjection.invert(arg0._2).get();
Customer customer = new Customer(Long.parseLong(record.get("customerId").toString()),
record.get("customerName").toString(), record.get("mobileNumber").toString(),
record.get("gender").toString(), Long.parseLong(record.get("bithDate").toString()),
record.get("email").toString(), record.get("address").toString(),
record.get("state").toString(), record.get("country").toString(),
Long.parseLong(record.get("pincode").toString()));
List<Customer> customerList = Arrays.asList(customer);
LOGGER.error("Customer List = {} jsc = {} ", customerList,
JavaSparkContext.fromSparkContext(SparkContext.getOrCreate()));
CassandraTableScanJavaRDD<CassandraRow>
//Throwing master url not found
customerGenderDetails = javaFunctions(
JavaSparkContext.fromSparkContext(SparkContext.getOrCreate()))
.cassandraTable("capstone", "customer").where("customerid = 11111");
String gender = null;
if (customerGenderDetails.count() > 0) {
gender = customerGenderDetails.first().getString("gender");
}
LOGGER.info("GENDER = {} ", gender);
// JavaRDD<Customer> newRDD =
// JavaSparkContext.fromSparkContext(SparkContext.getOrCreate())
// .parallelize(customerList);
JavaRDD<Customer> newRDD = ssc.sparkContext().parallelize(customerList);
LOGGER.info("newRDD = {} ", newRDD);
javaFunctions(newRDD).writerBuilder("capstone", "customer", mapToRow(Customer.class)).saveToCassandra();
LOGGER.error("SAVED TO CASSANDRA");
} catch (Exception e) {
LOGGER.error("Exception occured while parsing = {} ", e.getMessage());
throw e;
}
}
};
public static void main(String[] args) throws InterruptedException {
ssc = new JavaStreamingContext(JavaSparkContext.fromSparkContext(SparkContext.getOrCreate(conf)),
new Duration(2000));
Set<String> topics = Collections.singleton("customer_topic");
JavaPairInputDStream<String, String> directKafkaStream = KafkaUtils.createDirectStream(ssc, String.class,
String.class, StringDecoder.class, StringDecoder.class, kafkaParams, topics);
VoidFunction<JavaPairRDD<String, String>> iterateFunc = new VoidFunction<JavaPairRDD<String, String>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(JavaPairRDD<String, String> arg0) throws Exception {
if (!arg0.isEmpty())
arg0.foreach(mapFunc);
}
};
directKafkaStream.foreachRDD(iterateFunc);
ssc.start();
ssc.awaitTermination();
}
}
- Если я использую
JavaSparkContext.fromSparkContext(SparkContext.getOrCreate())
получить экземплярSparkContext
Я получаю URL Мастер не найден. - Если я использую
ssc.sparkContext()
Я получаю NPE. Даже если я использую статический для контекста искры, это бросает NPE.
В локальном режиме [*] он работает нормально, но при работе выше с пряжей он выбрасывает выше исключений.
spark-submit --class SparkStreamingCustomerJob --master yarn --deploy-mode cluster spark-cassandra-demo-0.0.1-SNAPSHOT-jar-with-dependencies.jar
Благодарю.