Программирование генной экспрессии [Java]: как просматривать представителей населения
Я использую демонстрацию библиотеки программирования генных выражений для получения альтернативных математических выражений. Я скачал все файлы классов для фреймворка uncommons.watchmaker и создал новый проект, который работает без jar-файлов. Проект Java (полный исходный код) прилагается здесь.
Я немного изменил демо, чтобы создать альтернативные математические выражения для данного числа. Например, скажем, я хочу получить все комбинации чисел от 2 до 11, которые умножатся на 12. Я получу 6 * 2, 3 * 4, 3 * 2 * 2, 2 * 6, 4 * 3, 2 * 2 * 3. Основная программа - TestMainProg.java
Мне интересно знать, как печатать население последнего поколения.
Выводы:
В API часовщика сказано, что evolvePopulation() в интерфейсе EvolutionEngine можно использовать для получения окончательных данных о населении. Однако я не уверен, как вызвать метод и распечатать данные. Глядя на EvolutionEngine.java, EvaluatedCandidate.java и AbstractEvolutionEngine.java будут полезны.
Ниже приведен код, который я использую:
import java.util.ArrayList;
import java.util.List;
import org.gep4j.GeneFactory;
import org.gep4j.INode;
import org.gep4j.INodeFactory;
import org.gep4j.IntegerConstantFactory;
import org.gep4j.KarvaEvaluator;
import org.gep4j.MutationOperator;
import org.gep4j.RecombinationOperator;
import org.gep4j.SimpleNodeFactory;
import org.gep4j.math.Multiply;
import org.uncommons.maths.random.MersenneTwisterRNG;
import org.uncommons.maths.random.Probability;
import org.uncommons.watchmaker.framework.EvolutionEngine;
import org.uncommons.watchmaker.framework.EvolutionObserver;
import org.uncommons.watchmaker.framework.EvolutionaryOperator;
import org.uncommons.watchmaker.framework.FitnessEvaluator;
import org.uncommons.watchmaker.framework.GenerationalEvolutionEngine;
import org.uncommons.watchmaker.framework.PopulationData;
import org.uncommons.watchmaker.framework.operators.EvolutionPipeline;
import org.uncommons.watchmaker.framework.selection.RouletteWheelSelection;
import org.uncommons.watchmaker.framework.termination.TargetFitness;
public class TestMainProg {
final KarvaEvaluator karvaEvaluator = new KarvaEvaluator();
public INode[] bestIndividual=null;
public void go() {
List<INodeFactory> factories = new ArrayList<INodeFactory>();
// init the GeneFactory that will create the individuals
//factories.add(new SimpleNodeFactory(new Add()));
factories.add(new SimpleNodeFactory(new Multiply()));
factories.add(new IntegerConstantFactory(2, 35)); //12,60,1 and the target number
double num = 36.0;
GeneFactory factory = new GeneFactory(factories, 20); //20 is the gene size
List<EvolutionaryOperator<INode[]>> operators = new ArrayList<EvolutionaryOperator<INode[]>>();
operators.add(new MutationOperator<INode[]>(factory, new Probability(0.01d)));
operators.add(new RecombinationOperator<INode[]>(factory, new Probability(0.5d)));
EvolutionaryOperator<INode[]> pipeline = new EvolutionPipeline<INode[]>(operators);
FitnessEvaluator<INode[]> evaluator = new FitnessEvaluator<INode[]>() {
@Override
public double getFitness(INode[] candidate, List<? extends INode[]> population) {
double result = (Double) karvaEvaluator.evaluate(candidate);
double error = Math.abs(num - result);
return error;
}
@Override
public boolean isNatural() {
return false;
}
};
EvolutionEngine<INode[]> engine = new GenerationalEvolutionEngine<INode[]>(factory, pipeline, evaluator,
new RouletteWheelSelection(), new MersenneTwisterRNG());
// add an EvolutionObserver so we can print out the status.
EvolutionObserver<INode[]> observer = new EvolutionObserver<INode[]>() {
@Override
public void populationUpdate(PopulationData<? extends INode[]> data) {
bestIndividual = data.getBestCandidate();
System.out.printf("Generation %d, PopulationSize = %d, error = %.1f, value = %.1f, %s\n",
data.getGenerationNumber(), data.getPopulationSize(),
Math.abs(/*Math.PI*/ num - (Double)karvaEvaluator.evaluate(bestIndividual)),
(Double)karvaEvaluator.evaluate(bestIndividual),
karvaEvaluator.print(bestIndividual));
}
};
engine.addEvolutionObserver(observer);
//to get the total population
engine.evolvePopulation(100,10,new TargetFitness(0.0001, false));
}
public static final void main(String args[]) {
new TestMainProg().go();
}
}
1 ответ
Распечатать всех правильных кандидатов в итоговой группе просто:
engine.evolvePopulation(100,10,new TargetFitness(0, false)).stream()
.filter( e -> e.getFitness() == 0 ) // Find all survivors
.map( e -> karvaEvaluator.print( e.getCandidate() ) ) // Convert to String
.forEach( System.out::println ); // Print
Однако получить несколько комбинаций из двух чисел сложнее:
GeneFactory
с длиной гена 5 или выше может привести кA x B x C
например, 2 х 2 х 9 = 36- В каждой эволюции гарантирован только один правильный результат.
Первый пункт должен быть легко исправить. Во-вторых, мы можем несколько раз запустить эволюцию и консолидировать результаты. Нет гарантии, что вы получите все комбинации, но чем больше вы запустите, тем выше будет шанс.
Советы по оптимизации:
1. Диапазон номеров должен быть как можно меньше, то есть от 2 до (цель / 2).
2. Рекомбинация не нужна, поскольку существует только умножение.
3. Это оставляет только (числовую) мутацию, которая может иметь более высокую вероятность возникновения.
Мое решение:
import java.util.*;
import java.util.stream.Collectors;
import org.gep4j.*;
import org.gep4j.math.Multiply;
import org.uncommons.maths.random.MersenneTwisterRNG;
import org.uncommons.maths.random.Probability;
import org.uncommons.watchmaker.framework.*;
import org.uncommons.watchmaker.framework.operators.EvolutionPipeline;
import org.uncommons.watchmaker.framework.selection.RouletteWheelSelection;
import org.uncommons.watchmaker.framework.termination.TargetFitness;
public class TestMainProg {
private static final double NUM = 36.0;
private static final int RUN = 50;
public void go() {
KarvaEvaluator karvaEvaluator = new KarvaEvaluator();
GeneFactory factory = new GeneFactory( Arrays.asList(
new SimpleNodeFactory(new Multiply()),
new IntegerConstantFactory( 2, (int)(NUM/2) )
), 3 );
EvolutionaryOperator<INode[]> pipeline = new EvolutionPipeline<>( Arrays.asList(
new MutationOperator<>(factory, new Probability(0.5d))
) );
FitnessEvaluator<INode[]> evaluator = new FitnessEvaluator<INode[]>() {
@Override public double getFitness(INode[] candidate, List<? extends INode[]> population) {
return Math.abs( NUM - (Double) karvaEvaluator.evaluate(candidate) );
}
@Override public boolean isNatural() {
return false;
}
};
EvolutionEngine<INode[]> engine = new GenerationalEvolutionEngine<>(factory, pipeline, evaluator,
new RouletteWheelSelection(), new MersenneTwisterRNG());
Set<String> results = new HashSet<>();
for ( int i = 0 ; i < RUN ; i ++ ) {
List<EvaluatedCandidate<INode[]>> finalPopulation =
engine.evolvePopulation(100,10, new TargetFitness(0, false));
// Add all survivors to result
finalPopulation.stream().filter( e -> e.getFitness() == 0 )
.map( e -> karvaEvaluator.print( e.getCandidate() ) )
.forEach( results::add );
}
new TreeSet( results ).stream().forEach( System.out::println );
}
public static final void main(String args[]) {
new TestMainProg().go();
}
}