Tf-idf с char_wb игнорирует пользовательский препроцессор?
Я имею
import nltk
from nltk.stem.snowball import GermanStemmer
def my_tokenizer(doc):
stemmer= GermanStemmer()
return([stemmer.stem(t.lower()) for t in nltk.word_tokenize(doc) if
t.lower() not in my_stop_words])
text="hallo df sdfd"
singleTFIDF = TfidfVectorizer(analyzer='char_wb', ngram_range=
(4,6),preprocessor=my_tokenizer, max_features=50).fit([str(text)])
Из документов ясно, что пользовательский toenizer применяется только для analyzer=word.
я получил
Traceback (most recent call last):
File "TfidF.py", line 95, in <module>
singleTFIDF = TfidfVectorizer(analyzer='char_wb', ngram_range=(4,6),preprocessor=my_tokenizer, max_features=50).fit([str(text)])
File "C:\Users\chris1\Anaconda3\envs\master\lib\site-packages\sklearn\feature_extraction\text.py", line 185, in _char_wb_ngrams
text_document = self._white_spaces.sub(" ", text_document)
TypeError: expected string or bytes-like object
1 ответ
Решение
Вы должны объединить слова, а затем вернуть одну строку. Попробуй это!
return(' '.join ([stemmer.stem(t.lower()) for t in nltk.word_tokenize(doc) if
t.lower() not in my_stop_words]))