Многопроцессорная обработка на tee'd-генераторах
Рассмотрим следующий сценарий, в котором я тестирую два способа выполнения некоторых вычислений для генераторов, полученных itertools.tee
:
#!/usr/bin/env python3
from sys import argv
from itertools import tee
from multiprocessing import Process
def my_generator():
for i in range(5):
print(i)
yield i
def double(x):
return 2 * x
def compute_double_sum(iterable):
s = sum(map(double, iterable))
print(s)
def square(x):
return x * x
def compute_square_sum(iterable):
s = sum(map(square, iterable))
print(s)
g1, g2 = tee(my_generator(), 2)
try:
processing_type = argv[1]
except IndexError:
processing_type = "no_multi"
if processing_type == "multi":
p1 = Process(target=compute_double_sum, args=(g1,))
p2 = Process(target=compute_square_sum, args=(g2,))
print("p1 starts")
p1.start()
print("p2 starts")
p2.start()
p1.join()
print("p1 finished")
p2.join()
print("p2 finished")
else:
compute_double_sum(g1)
compute_square_sum(g2)
Вот что я получаю, когда запускаю скрипт в "нормальном" режиме:
$ ./test_tee.py
0
1
2
3
4
20
30
И вот в параллельном режиме:
$ ./test_tee.py multi
p1 starts
p2 starts
0
1
2
3
4
20
0
1
2
3
4
30
p1 finished
p2 finished
Первоначальный генератор, видимо, как-то "копируется" и выполняется дважды.
Я хотел бы избежать этого, потому что в моем реальном приложении это, кажется, вызывает ошибку в одной из внешних библиотек, которые я использую для создания исходного генератора ( https://github.com/pysam-developers/pysam/issues/397), и при этом иметь возможность выполнять вычисления параллельно для тех же сгенерированных значений.
Есть ли способ добиться того, чего я хочу?
2 ответа
Я нашел альтернативный способ сделать это: /questions/27984539/primenit-umenshenie-na-vyihode-generatora-s-mnogoprotsessornostyu/27984546#27984546.
При таком подходе мы больше не используем генератор. Мы просто дублируем сгенерированные элементы и передаем их в составную функцию, которая выполняет параллельную обработку сгенерированных элементов только в рамках одного процесса, но мы используем многопроцессорность, используя Pool
(это то, что называется подходом карты / сокращения?):
#!/usr/bin/env python3
from itertools import starmap
from multiprocessing import Pool
from functools import reduce
from operator import add
def my_generator():
for i in range(5):
print(i)
yield i
def double(x):
return 2 * x
def square(x):
return x * x
def double_and_square(args_list):
return (double(*args_list[0]), square(*args_list[1]))
def sum_tuples(tup1, tup2):
return tuple(starmap(add, zip(tup1, tup2)))
with Pool(processes=5) as pool:
results_generator = pool.imap_unordered(double_and_square, (((arg,), (arg,)) for arg in my_generator()))
print(reduce(sum_tuples, results_generator))
Это работает на игрушечном примере. Теперь я должен выяснить, как аналогичным образом организовать мои вычисления в реальном случае приложения.
Я попытался обобщить это, используя функцию более высокого порядка (make_funcs_applier
) сгенерировать составную функцию (apply_funcs
), но я получаю следующую ошибку:
AttributeError: Can't pickle local object 'make_funcs_applier.<locals>.apply_funcs'
Более обобщенная попытка
Основываясь на предложении в комментариях, я попытался улучшить приведенное выше решение, чтобы сделать его более пригодным для повторного использования:
#!/usr/bin/env python3
"""This script tries to work around some limitations of multiprocessing."""
from itertools import repeat, starmap
from multiprocessing import Pool
from functools import reduce
from operator import add
# Doesn't work because local functions can't be pickled:
# def make_tuple_func(funcs):
# def tuple_func(args_list):
# return tuple(func(args) for func, args in zip(funcs, args_list))
# return tuple_func
#
# test_tuple_func = make_tuple_func((plus_one, double, square))
class FuncApplier(object):
"""This kind of object can be used to group functions and call them on a
tuple of arguments."""
__slots__ = ("funcs", )
def __init__(self, funcs):
self.funcs = funcs
def __len__(self):
return len(self.funcs)
def __call__(self, args_list):
return tuple(func(args) for func, args in zip(self.funcs, args_list))
def fork_args(self, args_list):
"""Takes an arguments list and repeat them in a n-tuple."""
return tuple(repeat(args_list, len(self)))
def sum_tuples(*tuples):
"""Element-wise sum of tuple items."""
return tuple(starmap(add, zip(*tuples)))
# Can't define these functions in main:
# They wouldn't be pickleable.
def plus_one(x):
return x + 1
def double(x):
return 2 * x
def square(x):
return x * x
def main():
def my_generator():
for i in range(5):
print(i)
yield i
test_tuple_func = FuncApplier((plus_one, double, square))
with Pool(processes=5) as pool:
results_generator = pool.imap_unordered(
test_tuple_func,
(test_tuple_func.fork_args(args_list) for args_list in my_generator()))
print("sum of x+1:\t%s\nsum of 2*x:\t%s\nsum of x*x:\t%s" % reduce(
sum_tuples, results_generator))
exit(0)
if __name__ == "__main__":
exit(main())
Тестирование это:
$ ./test_fork.py
0
1
2
3
4
sum of x+1: 15
sum of 2*x: 20
sum of x*x: 30
Для меня все еще есть некоторые раздражающие ограничения, потому что я часто определяю локальные функции в своем коде.
multiprocessing
Система импортирует ваш основной модуль в каждый запускаемый процесс. Поэтому код модуля выполняется в каждом процессе.
Вы можете избежать этого, используя всегда рекомендуемые
if __name__ == '__main__':
после определения вашего класса и функции, поэтому код для основной программы выполняется только в начальном процессе. Предполагается, что это требование только для платформ Windows, но, возможно, стоит попробовать, поскольку вы жалуетесь на то, что код запускается дважды.