GSLC с адаптивным алгоритмом LMS/RLS
У меня возникли некоторые проблемы с моим финальным проектом BSc, и я хотел бы знать, не могли бы вы помочь мне.
Я пытаюсь реализовать цифровой детектор на основе схемы GSLC плюс алгоритмы LMS и RLS (для сравнения производительности каждого из них, между другими). Вот когда всплывает моя проблема. Я уже успешно запрограммировал часть LMS, однако, когда дело доходит до RLS, я застрял в колее.
После просмотра какой-нибудь библиографии или через Интернет я все еще заблудился. Здесь я прилагаю соответствующий код:
clear all
clf
N=6; % Number of antennas
SNR=20; % SIgnal to noise ratio
mu=.01; % LMS step
niter=50000; % Number of iterations
Npro=10; % Number of promedies
lambda = 0.99; % Forgetting factor RLS
delta = 0.001; % Initialization of P(0)
% Scenario
a=25/180*pi; % Desired signal
b1=125/180*pi; % Interferring signal 1
b2=-90/180*pi; % Interferring signal 2
g=1; % Gain of our desired signal
s2n=10.^(-SNR/10);
% Definition of signals
sa=1/sqrt(N)*exp(j*pi*(0:N-1)*sin(a))';
sb1=1/sqrt(N)*exp(j*pi*(0:N-1)*sin(b1))';
sb2=1/sqrt(N)*exp(j*pi*(0:N-1)*sin(b2))';
% Correlation matrices
Rs=sa*sa';
Rint=sb1*sb1'+sb2*sb2'+s2n*eye(N);
Rx=Rs+Rint;
% Projection and blocking matrices
A=eye(N);
A(:,1)=sa;
% Gram-Schmidt algorithm
Aort=zeros(size(A));
Aort(:,1)=A(:,1)/sqrt(real((A(:,1)'*A(:,1))));
for k1=2:N
for k2=1:(k1-1)
Aort(:,k1)=Aort(:,k1)+(Aort(:,k2)'*A(:,k1))*Aort(:,k2);
end
Aort(:,k1)=A(:,k1)-Aort(:,k1);
Aort(:,k1)=Aort(:,k1)/sqrt(real((Aort(:,k1)'*Aort(:,k1))));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C=Aort(:,1); % Restrictions subspace
B=Aort(:,2:end); % Restrictions' orthogonal subspace
P_C=C*inv(C'*C)*C';
P_C_ort=eye(N)-P_C;
% Optimal solution
wopt=inv(Rx)*C*inv(C'*inv(Rx)*C)*g;
wq=sa;
e_gslc_LMS=zeros(Npro,niter); % Error sequence LMS
e_gslc_RLS=zeros(Npro,niter); % Error sequence RLS
% GSLC algorithm
for kk=1:Npro
Xa = kron(sa,ones(1,niter)).*kron(ones(N,1),(sign(randn(1,niter))+1i*sign((randn(1,niter)))/sqrt(2)));
Xb1 = kron(sb1,ones(1,niter)).*kron(ones(N,1),(sign(randn(1,niter))+1i*sign((randn(1,niter)))/sqrt(2)));
Xb2 = kron(sb2,ones(1,niter)).*kron(ones(N,1),(sign(randn(1,niter))+1i*sign((randn(1,niter)))/sqrt(2)));
X = Xa + Xb1 + Xb2 + (randn(size(Xa)) + 1i*randn(size(Xa)))/sqrt(2)*sqrt(s2n);
w_gslc_LMS = zeros(N,niter);
w_gslc_RLS = zeros(N,niter);
xa = B'*X;
wa_LMS = ones(N-1,niter);
wa_RLS = ones(N-1,niter);
P = inv(delta)*eye(N-1);
for k = 2:niter
y_LMS = X(:,k)'*w_gslc_LMS(:,k-1);
y_RLS = X(:,k)'*w_gslc_RLS(:,k-1);
% LMS
wa_LMS(:,k) = wa_LMS(:,k-1) + mu*xa(:,k)*(X(:,k)'*wq - xa(:,k)'*wa_LMS(:,k-1));
% RLS
z = P*xa(:,k);
alfa = X(:,k)'*wq - xa(:,k)'*wa_RLS(:,k-1);
ge = z/(lambda + xa(:,k)'*z);
P = (P - ge*z')/lambda;
wa_RLS(:,k) = wa_RLS(:,k-1) + alfa*ge;
w_gslc_LMS(:,k) = wq - B*wa_LMS(:,k);
w_gslc_RLS(:,k) = wq - B*wa_RLS(:,k);
end
e_gslc_LMS(kk,:) = sum(abs(w_gslc_LMS - kron(wopt,ones(1,niter))).^2,1)/N;
e_gslc_RLS(kk,:) = sum(abs(w_gslc_RLS - kron(wopt,ones(1,niter))).^2,1)/N;
end
figure(1)
plot(10*log10(mean(e_gslc_LMS)),'b'), hold on
plot(10*log10(mean(e_gslc_RLS)),'r')
grid
xlabel('Iterations')
ylabel('dB')
title('GSLC algorithm - Learning curve of LMS/RLS algorithms')
Пожалуйста, вы можете помочь мне выяснить, что не так? Любая помощь очень ценится!