Windows 7 перестает отвечать на запросы, если после имитации в R используется колесо прокрутки мыши

Я использую R 3.0.2 в Windows 7 64 бит. После запуска моделирования с выходом больше, чем около 100000 если использовать колесо прокрутки мыши в консоли R, Windows зависает на неопределенный срок.

Однажды я оставил это на более чем неделю без ответа. Принудительное отключение является единственным выходом, и оно не регистрируется в журнале событий Windows. Я пытался продублировать проблему в других программах, но, похоже, она возникает только в R. Я пробовал несколько версий R, каждая из которых была удалена и переустановлена, использовала несколько разных компьютерных мышек и драйверов и даже переустановила Windows. Ничто не устранило проблему.

Некоторые другие общие аспекты, о которых я могу думать (но еще не определенно, это факторы), заключаются в том,

  1. симуляции обычно выводят номера итераций и т. д. на консоль во время симуляции (используя flush.console() например) и

  2. во время (но не после завершения) моделирования использование памяти велико. Компьютер имеет 32 ГБ оперативной памяти и два процессора Intel Xeon E5-2687W (8-ядерный, 3,1 ГГц).

Пример, который может вызвать эту проблему для меня:

    foo<-function(X, SD, N, sims){
    output<-vector("list")
    for(i in 1:sims){
        output[[i]]<-rnorm(N, X, SD)
        flush.console()
        cat(paste("Iteration", i, ":", "\n",
            "mean = ", round(mean(output[[i]]),1), "\n",
            "sd   = ", round(sd(output[[i]]), 1), "\n"))
    }
    return(output)
    }

    result<-foo(X=20, SD=2, N=100, sims=100) # but increase N or sims to > 100000

    # Now used the mouse scroll wheel in the R console.  Computer freezes.
    # Can also do rm(list=ls()) after the simulation, then use scroll wheel... Computer still freezes.

1 ответ

Ваш код работает на моем компьютере без проблем (Rgui.exe и Tinn-R + Rterm.exe).

Windows 7 (64-разрядная версия) и R версии 3.0.2 исправлены (2013-10-08 r64039).

Смотрите вывод ниже:

R version 3.0.2 Patched (2013-10-08 r64039) -- "Frisbee Sailing"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R é um software livre e vem sem GARANTIA ALGUMA.
Você pode redistribuí-lo sob certas circunstâncias.
Digite 'license()' ou 'licence()' para detalhes de distribuição.

R é um projeto colaborativo com muitos contribuidores.
Digite 'contributors()' para obter mais informações e
'citation()' para saber como citar o R ou pacotes do R em publicações.

Digite 'demo()' para demonstrações, 'help()' para o sistema on-line de ajuda,
ou 'help.start()' para abrir o sistema de ajuda em HTML no seu navegador.
Digite 'q()' para sair do R.

> foo<-function(X, SD, N, sims){
+     output<-vector("list")
+     for(i in 1:sims){
+         output[[i]]<-rnorm(N, X, SD)
+         flush.console()
+         cat(paste("Iteration", i, ":", "\n",
+             "mean = ", round(mean(output[[i]]),1), "\n",
+             "sd   = ", round(sd(output[[i]]), 1), "\n"))
+     }
+     return(output)
+     }
> 
>     result<-foo(X=20, SD=2, N=100, sims=100) # but increase N or sims to > 100000
Iteration 1 : 
 mean =  20.1 
 sd   =  2 
Iteration 2 : 
 mean =  20 
 sd   =  2 
Iteration 3 : 
 mean =  19.9 
 sd   =  2 
Iteration 4 : 
 mean =  19.9 
 sd   =  1.9 
Iteration 5 : 
 mean =  19.5 
 sd   =  2.1 
Iteration 6 : 
 mean =  20 
 sd   =  2.2 
Iteration 7 : 
 mean =  20.2 
 sd   =  2.2 
Iteration 8 : 
 mean =  20 
 sd   =  1.8 
Iteration 9 : 
 mean =  19.5 
 sd   =  2 
Iteration 10 : 
 mean =  20.1 
 sd   =  2.1 
Iteration 11 : 
 mean =  19.8 
 sd   =  2 
Iteration 12 : 
 mean =  20 
 sd   =  2 
Iteration 13 : 
 mean =  20 
 sd   =  1.8 
Iteration 14 : 
 mean =  19.9 
 sd   =  1.8 
Iteration 15 : 
 mean =  20.2 
 sd   =  2 
Iteration 16 : 
 mean =  20.2 
 sd   =  1.8 
Iteration 17 : 
 mean =  20.5 
 sd   =  2.2 
Iteration 18 : 
 mean =  20 
 sd   =  1.9 
Iteration 19 : 
 mean =  19.8 
 sd   =  1.8 
Iteration 20 : 
 mean =  19.9 
 sd   =  2.2 
Iteration 21 : 
 mean =  20.2 
 sd   =  2 
Iteration 22 : 
 mean =  19.7 
 sd   =  1.8 
Iteration 23 : 
 mean =  19.8 
 sd   =  2 
Iteration 24 : 
 mean =  19.8 
 sd   =  1.9 
Iteration 25 : 
 mean =  19.9 
 sd   =  2.1 
Iteration 26 : 
 mean =  20.3 
 sd   =  2.1 
Iteration 27 : 
 mean =  19.6 
 sd   =  2 
Iteration 28 : 
 mean =  20 
 sd   =  2.1 
Iteration 29 : 
 mean =  20 
 sd   =  2.2 
Iteration 30 : 
 mean =  19.9 
 sd   =  1.7 
Iteration 31 : 
 mean =  19.9 
 sd   =  1.8 
Iteration 32 : 
 mean =  19.8 
 sd   =  1.9 
Iteration 33 : 
 mean =  20.1 
 sd   =  2.1 
Iteration 34 : 
 mean =  20.3 
 sd   =  2.2 
Iteration 35 : 
 mean =  20.2 
 sd   =  2 
Iteration 36 : 
 mean =  20.1 
 sd   =  2 
Iteration 37 : 
 mean =  19.8 
 sd   =  2.1 
Iteration 38 : 
 mean =  20 
 sd   =  2 
Iteration 39 : 
 mean =  20.1 
 sd   =  1.9 
Iteration 40 : 
 mean =  20.1 
 sd   =  2 
Iteration 41 : 
 mean =  19.8 
 sd   =  2.1 
Iteration 42 : 
 mean =  19.9 
 sd   =  2 
Iteration 43 : 
 mean =  19.8 
 sd   =  1.8 
Iteration 44 : 
 mean =  20.1 
 sd   =  1.7 
Iteration 45 : 
 mean =  20.1 
 sd   =  1.8 
Iteration 46 : 
 mean =  20.1 
 sd   =  1.9 
Iteration 47 : 
 mean =  20 
 sd   =  2.2 
Iteration 48 : 
 mean =  19.8 
 sd   =  1.9 
Iteration 49 : 
 mean =  19.9 
 sd   =  2.1 
Iteration 50 : 
 mean =  19.7 
 sd   =  2 
Iteration 51 : 
 mean =  19.9 
 sd   =  2 
Iteration 52 : 
 mean =  20.5 
 sd   =  2 
Iteration 53 : 
 mean =  20 
 sd   =  2 
Iteration 54 : 
 mean =  20.3 
 sd   =  1.9 
Iteration 55 : 
 mean =  19.9 
 sd   =  1.9 
Iteration 56 : 
 mean =  20.1 
 sd   =  2.1 
Iteration 57 : 
 mean =  20.3 
 sd   =  2.2 
Iteration 58 : 
 mean =  19.8 
 sd   =  2.3 
Iteration 59 : 
 mean =  20.2 
 sd   =  2 
Iteration 60 : 
 mean =  19.6 
 sd   =  2.1 
Iteration 61 : 
 mean =  19.9 
 sd   =  1.9 
Iteration 62 : 
 mean =  20.1 
 sd   =  1.9 
Iteration 63 : 
 mean =  20.1 
 sd   =  2.3 
Iteration 64 : 
 mean =  19.8 
 sd   =  2.1 
Iteration 65 : 
 mean =  20 
 sd   =  2 
Iteration 66 : 
 mean =  19.7 
 sd   =  1.9 
Iteration 67 : 
 mean =  20.1 
 sd   =  2.1 
Iteration 68 : 
 mean =  20.2 
 sd   =  2 
Iteration 69 : 
 mean =  20.1 
 sd   =  2 
Iteration 70 : 
 mean =  20.2 
 sd   =  2.1 
Iteration 71 : 
 mean =  20.1 
 sd   =  2 
Iteration 72 : 
 mean =  20.2 
 sd   =  2.1 
Iteration 73 : 
 mean =  20.1 
 sd   =  2 
Iteration 74 : 
 mean =  20 
 sd   =  2 
Iteration 75 : 
 mean =  19.8 
 sd   =  2.2 
Iteration 76 : 
 mean =  20.1 
 sd   =  2.2 
Iteration 77 : 
 mean =  20.2 
 sd   =  1.5 
Iteration 78 : 
 mean =  20.1 
 sd   =  2.2 
Iteration 79 : 
 mean =  20.2 
 sd   =  2.1 
Iteration 80 : 
 mean =  20.1 
 sd   =  2.1 
Iteration 81 : 
 mean =  20 
 sd   =  1.8 
Iteration 82 : 
 mean =  20.4 
 sd   =  2.1 
Iteration 83 : 
 mean =  20.1 
 sd   =  1.9 
Iteration 84 : 
 mean =  20.1 
 sd   =  2.1 
Iteration 85 : 
 mean =  20.2 
 sd   =  2 
Iteration 86 : 
 mean =  19.8 
 sd   =  2.1 
Iteration 87 : 
 mean =  20.1 
 sd   =  2 
Iteration 88 : 
 mean =  19.9 
 sd   =  2.1 
Iteration 89 : 
 mean =  20 
 sd   =  1.9 
Iteration 90 : 
 mean =  19.8 
 sd   =  2.2 
Iteration 91 : 
 mean =  19.9 
 sd   =  2 
Iteration 92 : 
 mean =  20 
 sd   =  2 
Iteration 93 : 
 mean =  19.9 
 sd   =  2.2 
Iteration 94 : 
 mean =  19.8 
 sd   =  1.8 
Iteration 95 : 
 mean =  19.7 
 sd   =  1.8 
Iteration 96 : 
 mean =  20.6 
 sd   =  1.8 
Iteration 97 : 
 mean =  20.1 
 sd   =  2 
Iteration 98 : 
 mean =  19.8 
 sd   =  1.9 
Iteration 99 : 
 mean =  19.9 
 sd   =  1.9 
Iteration 100 : 
 mean =  19.8 
 sd   =  1.8 
> 
Другие вопросы по тегам