Метод исключения Гаусса в сборе MIPS
Программа должна учитывать следующие функциональные возможности: 2D-массив с системой, которую нужно решить, передается программе как существующая переменная память. - Данные относятся к типу double float. -Программа должна сохранить результат в другой переменной. -Программа должна показать систему линейных уравнений, прежде чем будет решена, и, в конце концов, должна показать решение.
Я сделал этот код, который показывает матрицу:
.text
ldc1 $f30, double.zero($0)
ldc1 $f28, double.um($0)
ldc1 $f26, ajuste.ID($0)
la $a0,comeco
li $v0,4
syscall
la $a1,matrizA
jal build
la $a1, matrizAinv
lw $a2, importante($0)
jal buildID
la $a0,imprimirA
li $v0,4
syscall
la $a1,matrizA
jal printmatrix
la $a0,matrizA
lw $a1,importante($0)
la $a2,matrizA2
jal copia_matriz
la $a0,imprimirID
li $v0,4
syscall
la $a1,matrizAinv
lw $a2,importante($0)
jal printmatrix
li $v0,10 #Fim
syscall
build:
la $a0, dimensao
li $v0, 4
syscall
li $v0, 5
syscall
sw $v0, importante($0)
move $t0, $v0
move $t2, $zero
move $t3, $zero
li $t5, 8
main.cycle:
beq $t3, $t0, continue
second.cycle:
beq $t2, $t0, third.cycle
la $a0, element
li $v0, 4
syscall
move $a0, $t3
li $v0, 1
syscall
la $a0, comma
li $v0, 4
syscall
move $a0, $t2
li $v0, 1
syscall
li $v0, 7
syscall
sdc1 $f0, 0($a1)
add $a1, $a1, $t5
la $a0, enter
li $v0, 4
syscall
addi $t2, $t2, 1 #faz j++
j second.cycle
third.cycle:
addi $t3, $t3, 1
move $t2, $zero
j main.cycle
continue:
jr $ra
buildID:
move $t2,$zero #i=0
move $t3,$zero #j=0
first.loop:
beq $t2,$a2,continue
second.loop:
beq $t3,$a2,controle.conts
bne $t2,$t3,element.zero
sdc1 $f28,0($a1)
end.second.loop:
add $a1,$a1,$t5
addi $t3,$t3,1
j second.loop
element.zero:
sdc1 $f30,0($a1)
j end.second.loop
controle.conts:
addi $t2,$t2,1
move $t3,$zero
j first.loop
copia_matriz:
move $t0,$0
move $t1,$0
loop:
beq $t0,$a1,fim_copia_matriz
beq $t1,$a1,incrementa.zera
ldc1 $f1,0($a0)
sdc1 $f1,0($a2)
addi $a0,$a0,8
addi $a2,$a2,8
addi $t1,$t1,1
j loop
incrementa.zera:
addi $t0,$t0,1
move $t1,$0
j loop
fim_copia_matriz:
jr $ra
printmatrix:
move $t0,$a2
move $t1,$a2
move $t2, $zero #reset i
move $t3, $zero #reset j
main.cycle3: #main cycle that print the matrix (first for)
beq $t2, $a2, exit3 #if i equal the number of lines of the matrix jump to exit3
la $a0, bar #load the addr of barleft into $a0
li $v0, 4 #4 is the print_string syscall
syscall #do the syscall
second.cycle3: #second cycle that print the matrix (second for)
la $a0, tab #load the addr of tab into $a0
li $v0, 4 #4 is the print_string syscall
syscall
beq $t3, $t0, third.cycle3 #if j equal the number of columms of the matrix go to the third cycle
mul $t4, $t0, $t2 #ColC*i
add $t4, $t4, $t3 #ColC*i+j
sll $t4, $t4, 3 #(ColC*i+j)*8
add $t5, $a1, $t4 #go to the element C[i][j]
ldc1 $f12, 0($t5)
li $v0, 3 #3 is the print_double syscall
syscall #do the syscall
move $t4, $zero #reset the index of the element
move $t5, $zero #reset the adress of the element
addi $t3, $t3, 1 #do j++
j second.cycle3 #continue the while with j++
third.cycle3: #third cycle that builds the matrix
addi $t2, $t2, 1 #do i++
la $a0, bar #load the addr of barright into $a0
li $v0, 4 #4 is the print_string syscall
syscall #do the syscall
la $a0, enter #load the addr of enter into $a0
li $v0, 4 #4 is the print_string syscall
syscall #do the syscall
move $t3, $zero #reset j
j main.cycle3 #continue the while with i++
exit3: #after print the matrix, return to main
la $a0, enter #load the addr of enter into $a0
li $v0, 4 #4 is the print_string syscall
syscall #do the syscall
jr $ra #return to main
Я не знаю, как применить метод Гаусса. ребята, вы можете мне помочь?
1 ответ
Посмотрите, поможет ли это. ура
### Text segment
.text
main:
la $a0, matrix_3x3
li $a1, 3
jal print_matrix
nop
jal gauss_reduct
nop
jal print_matrix
nop
la $a2, solution
jal gauss_solve
nop
jal print_solution
nop
exit:
li $v0, 10
syscall
gauss_reduct:
addiu $sp, $sp, -24
sw $ra, 20($sp)
sw $s2, 16($sp)
sw $s1, 12($sp)
sw $s0, 8($sp)
sw $a1, 4($sp)
sw $a0, 0($sp)
add $t3, $a0, $zero
addi $t4, $a1, -1
addi $t5, $a1, 0
add $t2, $zero, $zero
gauss_reduct_ciclok:
beq $t2, $t5, gauss_reduct_end
nop
add $t1, $zero, $zero
gauss_reduct_cicloj:
beq $t1, $t5, gauss_reduct_fim_ciclo_j
nop
beq $t1,$t2,gauss_reduct_cicloj_continue
nop
move $a0, $t1
move $a1, $t2
jal fetchaddress
nop
move $s1, $v0
ldc1 $f6,($s1)
move $a0, $t2
move $a1, $t2
jal fetchaddress
nop
move $s1, $v0
ldc1 $f8,($s1)
div.d $f4,$f6,$f8
add $t0,$zero,$zero
move $a0, $t1
move $a1, $t0
jal fetchaddress
nop
move $s1, $v0
move $a0, $t2
move $a1, $t0
jal fetchaddress
nop
move $s2, $v0
gauss_reduct_cicloi:
bgt $t0, $t5,gauss_reduct_fim_ciclo_i
nop
ldc1 $f6,($s1)
ldc1 $f8,($s2)
mul.d $f8,$f8,$f4
sub.d $f6,$f6,$f8
sdc1 $f6,($s1)
addiu $t0,$t0,1
addiu $s1,$s1,8
addiu $s2,$s2,8
j gauss_reduct_cicloi
nop
gauss_reduct_fim_ciclo_i:
gauss_reduct_cicloj_continue:
addiu $t1,$t1,1
j gauss_reduct_cicloj
nop
gauss_reduct_fim_ciclo_j:
addiu $t2,$t2,1
j gauss_reduct_ciclok
nop
gauss_reduct_end:
lw $ra, 20($sp)
lw $s2, 16($sp)
lw $s1, 12($sp)
lw $s0, 8($sp)
lw $a1, 4($sp)
lw $a0, 0($sp)
addiu $sp, $sp, 24
jr $ra
nop
gauss_solve:
addiu $sp, $sp, -24
sw $ra, 20($sp)
sw $s2, 16($sp)
sw $s1, 12($sp)
sw $s0, 8($sp)
sw $a1, 4($sp)
sw $a0, 0($sp)
add $t3, $a0, $zero
addi $t0, $a1, -1
addi $t5, $a1, 0
sll $s1, $t4, 3
addu $s1, $s1, $a2
addi $t0, $t4, 0
gauss_solve_cicloi:
blt $t0, $zero, gauss_solve_end
nop
# v0 = &A[i][n]
move $a0, $t0
move $a1, $t5
jal fetchaddress
nop
# $f6 = A[i][n]
ldc1 $f6,($v0)
# X[i] = A[i][n]
sdc1 $f6,($s1)
addi $t1, $t0, 1
sll $s2, $t1, 3
add $s2, $s2, $a2
gauss_solve_cicloj:
beq $t1, $t5, gauss_solve_fim_cicloi
nop
# v0 = &A[i][j]
move $a0, $t0
move $a1, $t1
jal fetchaddress
nop
ldc1 $f8,($v0)
ldc1 $f4,($s2)
mul.d $f8,$f8,$f4
sub.d $f6,$f6,$f8
sdc1 $f6,($s1)
addi $t1,$t1,1
addi $s2, $s2, 8
j gauss_solve_cicloj
nop
gauss_solve_fim_cicloi:
# v0 = &A[i][i]
move $a0, $t0
move $a1, $t0
jal fetchaddress
nop
# $f8 = A[i][i]
ldc1 $f8,($v0)
# x[i] = x[i] / A[i][i];
div.d $f6,$f6,$f8
sdc1 $f6,($s1)
subi $t0,$t0,1
subi $s1, $s1, 8
j gauss_solve_cicloi
nop
gauss_solve_end:
lw $ra, 20($sp)
lw $s2, 16($sp)
lw $s1, 12($sp)
lw $s0, 8($sp)
lw $a1, 4($sp)
lw $a0, 0($sp)
addiu $sp, $sp, 24
jr $ra
nop
fetchaddress:
addiu $t5,$t5,1
multu $a0, $t5
subiu $t5,$t5,1
mflo $v0
add $v0, $v0, $a1
sll $v0, $v0, 3
add $v0, $v0, $t3
jr $ra
nop
print_matrix:
addiu $sp, $sp, -24
sw $ra, 20($sp)
sw $s2, 16($sp)
sw $s1, 12($sp)
sw $s0, 8($sp)
sw $a2, 4($sp)
sw $a0, 0($sp)
move $s2, $a0
move $s1, $zero
loop_s1:
addi $a2,$a1,1
move $s0, $zero
loop_s0:
l.d $f12, 0($s2)
li $v0, 3
syscall
la $a0, spaces
li $v0, 4
syscall
addiu $s2, $s2, 8
addiu $s0, $s0, 1
blt $s0, $a2, loop_s0
nop
la $a0, newline
syscall
addiu $s1, $s1, 1
blt $s1, $a1, loop_s1
nop
la $a0, newline
syscall
lw $ra, 20($sp)
lw $s2, 16($sp)
lw $s1, 12($sp)
lw $s0, 8($sp)
lw $a2, 4($sp)
lw $a0, 0($sp)
addiu $sp, $sp, 20
jr $ra # return
nop
print_solution:
addiu $sp, $sp, -24
sw $ra, 20($sp)
sw $s2, 16($sp)
sw $s1, 12($sp)
sw $s0, 8($sp)
sw $a2, 4($sp)
sw $a0, 0($sp)
move $s1, $zero
move $s2, $a2
print_solution_loop_s0:
ldc1 $f12, ($s2)
li $v0, 3
syscall
addiu $s2, $s2, 8
addiu $s1, $s1, 1
la $a0, newline
li $v0, 4
syscall
blt $s1, $a1, print_solution_loop_s0
nop
lw $ra, 20($sp)
lw $s2, 16($sp)
lw $s1, 12($sp)
lw $s0, 8($sp)
lw $a2, 4($sp)
lw $a0, 0($sp)
addiu $sp, $sp, 20
jr $ra
nop
### End of text segment
### Data segment
.data
### String constants
spaces:
.asciiz " "
newline:
.asciiz "\n"
## Input matrix: (4x4) ##
matrix_4x4:
.double 1.0
.double -2.0
.double 1.0
.double 3.0
.double 1.0
.double 2.0
.double -2.0
.double -2.0
.double -2.0
.double 5.0
.double 1.0
.double -0.25
.double 4.0
.double 7.0
.double -7.0
.double 1.0
.double 1.0
.double 1.0
.double 1.0
.double 3.0
solution:
.double 0.0
.double 0.0
.double 0.0
.double 0.0
matrix_3x3:
.double 2.0
.double 1.0
.double -3.0
.double -1.0
.double -1.0
.double 3.0
.double 2.0
.double 12.0
.double 3.0
.double 1.0
.double -3.0
.double 0.0
### End of data segment