Отправка многопроцессорных заданий Python на основе совокупных критериев для всех запущенных заданий
Критерии агрегирования Python для многопроцессорных заданий для всех запущенных заданий
У меня есть работа, которая требует некоторой работы с базой данных Teradata и в качестве аргумента принимает количество сессий БД. В базе данных установлен максимальный предел 60 сессий на количество дБ. Можно ли использовать многопроцессорность для условной обработки заданий, чтобы сумма (num_db_sessions) во всех активных дочерних процессах <= max_num_db_sessions?
Я просто вставляю псевдокод ниже:
import multiprocessing as mp
import time
def dbworker(db_object, num_db_sessions):
# do work on db_object #####
# The sum(num_db_sessions) <= max_num_db_sessions
print (db_object, num_db_sessions)
# The db_objs with larger num_db_sessions take longer to finish
time.sleep(num_db_sessions)
return
if __name__ == "__main__":
max_num_db_sessions = 60
# JobsList (db_object,num_db_sessions)
jobs_list = [('A', 15), ('B', 15), ('C', 15), ('D', 15)
, ('E', 1), ('F', 1), ('G', 1), ('H', 1)
, ('I', 1), ('J', 1), ('K', 1), ('L', 1)
, ('M', 2), ('N', 1), ('O', 1), ('P', 1)
, ('Q', 2), ('R', 2), ('S', 2), ('T', 2)
, ('U', 2), ('V', 2), ('W', 2), ('X', 2)
, ('Y', 2), ('Z', 2)]
## Submit jobs_list to mutltiprocessing ####
for db_object,num_db_sessions in jobs_list:
dbworker(db_object,num_db_sessions) ## -->>> sum(num_db_sessions) <= max_num_db_sessions
## Is this possible ??
1 ответ
Я понял это. Код ниже делает это. Ключевые элементы:
1) Запустите отдельный процесс демона, чтобы поставить задачи в очередь. Целевая функция для этого выполняет оркестровку
2) Реализуйте счетчик как multiprocessing.value, который отслеживает текущее количество запущенных сеансов. Реализация счетчика была взята с https://eli.thegreenplace.net/2012/01/04/shared-counter-with-pythons-multiprocessing
3) Реализовать multiprocessing.manager(). List() для отслеживания неподтвержденных заданий.
4) Использование ядовитой пилюли, чтобы прервать рабочий процесс, отправив None * number_of_child_processes, как реализовано в подходе ядовитой пилюли. Это было взято с https://pymotw.com/3/multiprocessing/communication.html
Рабочая функция использует time.sleep(num_db_sessions) как способ имитации рабочей нагрузки (большее время обработки)
Вот код
import multiprocessing
import time
class Counter(object):
def __init__(self, initval=0):
self.val = multiprocessing.Value('i', initval)
self.lock = multiprocessing.Lock()
def increment(self,val):
with self.lock:
self.val.value += val
def value(self):
with self.lock:
return self.val.value
def queue_manager(tasks,results,jobs_list,counter,max_num_db_sessions,num_consumers):
proc_name = multiprocessing.current_process().name
while len(jobs_list) > 0:
current_counter = counter.value()
available_sessions = max_num_db_sessions - current_counter
if available_sessions > 0:
prop_list = [(p,s) for p,s in jobs_list if s <= available_sessions]
if (len(prop_list)) > 0:
with multiprocessing.Lock():
print(prop_list[0])
tasks.put(prop_list[0][0])
jobs_list.remove(prop_list[0])
counter.increment(prop_list[0][1])
print("Process: {} -- submitted:{} Counter is:{} Sessions:{}".format(proc_name
, prop_list[0][0]
, current_counter
, available_sessions)
)
else:
print("Process: {} -- Sleeping:{} Counter is:{} Sessions:{}".format(proc_name
, str(5)
, current_counter
, available_sessions)
)
time.sleep(5)
else:
for i in range(num_consumers):
tasks.put(None)
def worker(tasks,counter,proc_list):
proc_name = multiprocessing.current_process().name
while True:
obj = tasks.get()
if obj is None:
break
name,age = [(name,sess) for name,sess in proc_list if name == obj][0]
print("Process: {} -- Processing:{} Sleeping for:{} Counter is:{}".format(proc_name
,name
,age
,counter.value())
)
time.sleep(age)
counter.increment(-age)
print("Process: {} -- Exiting:{} Sleeping for:{} Counter is:{}".format(proc_name
,name
,age
,counter.value())
)
if __name__ == '__main__':
max_num_db_sessions = 60
tasks = multiprocessing.JoinableQueue()
results = multiprocessing.Queue() # This will be unused now. But will use it.
mpmanager = multiprocessing.Manager()
proc_list = [('A', 15), ('B', 15), ('C', 15), ('D', 15)
, ('E', 1), ('F', 1), ('G', 1), ('H', 1)
, ('I', 1), ('J', 1), ('K', 1), ('L', 1)
, ('M', 2), ('N', 1), ('O', 1), ('P', 1)
, ('Q', 2), ('R', 2), ('S', 2), ('T', 2)
, ('U', 2), ('V', 2), ('W', 2), ('X', 2)
, ('Y', 2), ('Z', 2)]
jobs_list = mpmanager.list(proc_list)
counter = Counter(0)
num_cpu = 3
d = multiprocessing.Process(name='Queue_manager_proc'
,target=queue_manager
,args=(tasks, results, jobs_list, counter
, max_num_db_sessions, num_cpu)
)
d.daemon = True
d.start()
jobs = []
for i in range(num_cpu):
p = multiprocessing.Process(name="Worker_proc_{}".format(str(i+1))
,target=worker
,args=(tasks,counter,proc_list)
)
jobs.append(p)
p.start()
for job in jobs:
job.join()
d.join()