Spark CBO не показывает количество строк для запросов, имеющих столбец раздела в запросе

Я работаю над Spark 2.3.0, используя Cost Based Optimizer(CBO) для вычисления статистики по запросам, выполненным во внешних таблицах.

Я создал внешнюю таблицу в спарк:

CREATE EXTERNAL TABLE IF NOT EXISTS test (
eventID string,type string,exchange string,eventTimestamp bigint,sequenceNumber bigint
,optionID string,orderID string,side string,routingFirm string,routedOrderID string
,session string,price decimal(18,8),quantity bigint,timeInForce string,handlingInstructions string
,orderAttributes string,isGloballyUnique boolean,originalOrderID string,initiator string,leavesQty bigint
,symbol string,routedOriginalOrderID string,displayQty bigint,orderType string,coverage string
,result string,resultTimestamp bigint,nbbPrice decimal(18,8),nbbQty bigint,nboPrice decimal(18,8)
,nboQty bigint,reporter string,quoteID string,noteType string,definedNoteData string,undefinedNoteData string
,note string,desiredLeavesQty bigint,displayPrice decimal(18,8),workingPrice decimal(18,8),complexOrderID string
,complexOptionID string,cancelQty bigint,cancelReason string,openCloseIndicator string,exchOriginCode string
,executingFirm string,executingBroker string,cmtaFirm string,mktMkrSubAccount string,originalOrderDate string
,tradeID string,saleCondition string,executionCodes string,buyDetails_side string,buyDetails_leavesQty bigint
,buyDetails_openCloseIndicator string,buyDetails_quoteID string,buyDetails_orderID string,buyDetails_executingFirm string,buyDetails_executingBroker string,buyDetails_cmtaFirm string,buyDetails_mktMkrSubAccount string,buyDetails_exchOriginCode string,buyDetails_liquidityCode string,buyDetails_executionCodes string,sellDetails_side string,sellDetails_leavesQty bigint,sellDetails_openCloseIndicator string,sellDetails_quoteID string,sellDetails_orderID string,sellDetails_executingFirm string,sellDetails_executingBroker string,sellDetails_cmtaFirm string,sellDetails_mktMkrSubAccount string,sellDetails_exchOriginCode string,sellDetails_liquidityCode string,sellDetails_executionCodes string,tradeDate int,reason string,executionTimestamp bigint,capacity string,fillID string,clearingNumber string
,contraClearingNumber string,buyDetails_capacity string,buyDetails_clearingNumber string,sellDetails_capacity string
,sellDetails_clearingNumber string,receivingFirm string,marketMaker string,sentTimestamp bigint,onlyOneQuote boolean
,originalQuoteID string,bidPrice decimal(18,8),bidQty bigint,askPrice decimal(18,8),askQty bigint,declaredTimestamp bigint,revokedTimestamp bigint,awayExchange string,comments string,clearingFirm string )
PARTITIONED BY (date integer ,reporteIDs string ,version integer )
STORED AS PARQUET LOCATION '/home/test/' 

Я вычислил статистику по столбцам с помощью следующей команды:

val df = spark.read.parquet("/home/test/")
val cols = df.columns.mkString(",")
val analyzeDDL = s"Analyze table events compute statistics for columns $cols"
spark.sql(analyzeDDL)

Теперь, когда я пытаюсь получить статистику для запроса:

val query = "Select * from test where date > 20180222"

Это дает мне только размер, а не rowCount:

scala> val exec = spark.sql(query).queryExecution
exec: org.apache.spark.sql.execution.QueryExecution =
== Parsed Logical Plan ==
'Project [*]
+- 'Filter ('date > 20180222)
   +- 'UnresolvedRelation `test`

== Analyzed Logical Plan ==
eventID: string, type: string, exchange: string, eventTimestamp: bigint, sequenceNumber: bigint, optionID: string, orderID: string, side: string, routingFirm: string, routedOrderID: string, session: string, price: decimal(18,8), quantity: bigint, timeInForce: string, handlingInstructions: string, orderAttributes: string, isGloballyUnique: boolean, originalOrderID: string, initiator: string, leavesQty: bigint, symbol: string, routedOriginalOrderID: string, displayQty: bigint, orderType: string, ... 82 more fields
Project [eventID#797974, type#797975, exchange#797976, eventTimestamp#797977L, sequenceNumber#...
scala>

scala> val stats = exec.optimizedPlan.stats
stats: org.apache.spark.sql.catalyst.plans.logical.Statistics = Statistics(sizeInBytes=1.0 B, hints=none)

Я пропускаю какие-либо шаги здесь? Как я могу получить количество строк для запроса.

Spark-версия: 2.3.0 Файлы в таблице представлены в формате паркета.

Обновление Я могу получить статистику для CSV-файла. Не в состоянии получить то же самое для файла паркета.

Разница между планом выполнения для паркета и CSV заключается в том, что в CSV мы получаем HiveTableRelation в то время как для паркета его Relation,

Есть идеи, почему это так?

0 ответов

Другие вопросы по тегам