Чтение двоичного файла и зацикливание каждого байта

В Python, как мне прочитать в двоичном файле и перебрать каждый байт этого файла?

13 ответов

Решение

Python 2.4 и ранее

f = open("myfile", "rb")
try:
    byte = f.read(1)
    while byte != "":
        # Do stuff with byte.
        byte = f.read(1)
finally:
    f.close()

Python 2.5-2.7

with open("myfile", "rb") as f:
    byte = f.read(1)
    while byte != "":
        # Do stuff with byte.
        byte = f.read(1)

Обратите внимание, что оператор with недоступен в версиях Python ниже 2.5. Чтобы использовать его в версии 2.5, вам нужно импортировать его:

from __future__ import with_statement

В 2.6 это не нужно.

Python 3

В Python 3 все немного по-другому. Мы больше не будем получать необработанные символы из потока в байтовом режиме, а только байтовые объекты, поэтому нам нужно изменить условие:

with open("myfile", "rb") as f:
    byte = f.read(1)
    while byte != b"":
        # Do stuff with byte.
        byte = f.read(1)

Или, как говорит Бенхойт, пропустите неравное и воспользуйтесь тем, что b"" оценивается как ложное. Это делает код совместимым между 2.6 и 3.x без каких-либо изменений. Это также избавит вас от изменения условия, если вы перейдете из байтового режима в текстовый или наоборот.

with open("myfile", "rb") as f:
    byte = f.read(1)
    while byte:
        # Do stuff with byte.
        byte = f.read(1)

Этот генератор возвращает байты из файла, читая файл кусками:

def bytes_from_file(filename, chunksize=8192):
    with open(filename, "rb") as f:
        while True:
            chunk = f.read(chunksize)
            if chunk:
                for b in chunk:
                    yield b
            else:
                break

# example:
for b in bytes_from_file('filename'):
    do_stuff_with(b)

Смотрите документацию по Python для получения информации об итераторах и генераторах.

Если файл не слишком велик, проблема заключается в том, чтобы удерживать его в памяти:

bytes_read = open("filename", "rb").read()
for b in bytes_read:
    process_byte(b)

где process_byte представляет некоторую операцию, которую вы хотите выполнить над переданным байтом.

Если вы хотите обрабатывать чанк одновременно:

file = open("filename", "rb")
try:
    bytes_read = file.read(CHUNKSIZE)
    while bytes_read:
        for b in bytes_read:
            process_byte(b)
        bytes_read = file.read(CHUNKSIZE)
finally:
    file.close()

Чтение двоичного файла в Python и цикл по каждому байту

Новое в Python 3.5 - это pathlib Модуль, который имеет удобный метод для чтения в файле в виде байтов, что позволяет нам перебирать байты. Я считаю, что это достойный (если быстрый и грязный) ответ:

import pathlib

for byte in pathlib.Path(path).read_bytes():
    print(byte)

Интересно, что это единственный ответ, чтобы упомянуть pathlib,

В Python 2 вы, вероятно, сделали бы это (как предлагает и Vinay Sajip):

with open(path, 'b') as file:
    for byte in file.read():
        print(byte)

В случае, если файл может быть слишком большим, чтобы перебрать его в памяти, вы бы идиотически разбили его на части, используя iter функция с callable, sentinel подпись - версия Python 2:

with open(path, 'b') as file:
    callable = lambda: file.read(1024)
    sentinel = bytes() # or b''
    for chunk in iter(callable, sentinel): 
        for byte in chunk:
            print(byte)

(Несколько других ответов упоминают об этом, но немногие предлагают разумный размер чтения.)

Лучшая практика для больших файлов или буферизованного / интерактивного чтения

Давайте создадим для этого функцию, в том числе идиоматическое использование стандартной библиотеки для Python 3.5+:

from pathlib import Path
from functools import partial
from io import DEFAULT_BUFFER_SIZE

def file_byte_iterator(path):
    """given a path, return an iterator over the file
    that lazily loads the file
    """
    path = Path(path)
    with path.open('rb') as file:
        reader = partial(file.read1, DEFAULT_BUFFER_SIZE)
        file_iterator = iter(reader, bytes())
        for chunk in file_iterator:
            for byte in chunk:
                yield byte

Обратите внимание, что мы используем file.read1, file.read блокирует, пока не получит все запрошенные байты или EOF, file.read1 позволяет нам избежать блокировки, и это может вернуться быстрее из-за этого. Никакие другие ответы не упоминают это также.

Демонстрация использования лучших практик:

Давайте создадим файл с мегабайтом (на самом деле мегибайт) псевдослучайных данных:

import random
import pathlib
path = 'pseudorandom_bytes'
pathobj = pathlib.Path(path)

pathobj.write_bytes(
  bytes(random.randint(0, 255) for _ in range(2**20)))

Теперь давайте переберем его и осуществим в памяти:

>>> l = list(file_byte_iterator(path))
>>> len(l)
1048576

Мы можем проверить любую часть данных, например, последние 100 и первые 100 байтов:

>>> l[-100:]
[208, 5, 156, 186, 58, 107, 24, 12, 75, 15, 1, 252, 216, 183, 235, 6, 136, 50, 222, 218, 7, 65, 234, 129, 240, 195, 165, 215, 245, 201, 222, 95, 87, 71, 232, 235, 36, 224, 190, 185, 12, 40, 131, 54, 79, 93, 210, 6, 154, 184, 82, 222, 80, 141, 117, 110, 254, 82, 29, 166, 91, 42, 232, 72, 231, 235, 33, 180, 238, 29, 61, 250, 38, 86, 120, 38, 49, 141, 17, 190, 191, 107, 95, 223, 222, 162, 116, 153, 232, 85, 100, 97, 41, 61, 219, 233, 237, 55, 246, 181]
>>> l[:100]
[28, 172, 79, 126, 36, 99, 103, 191, 146, 225, 24, 48, 113, 187, 48, 185, 31, 142, 216, 187, 27, 146, 215, 61, 111, 218, 171, 4, 160, 250, 110, 51, 128, 106, 3, 10, 116, 123, 128, 31, 73, 152, 58, 49, 184, 223, 17, 176, 166, 195, 6, 35, 206, 206, 39, 231, 89, 249, 21, 112, 168, 4, 88, 169, 215, 132, 255, 168, 129, 127, 60, 252, 244, 160, 80, 155, 246, 147, 234, 227, 157, 137, 101, 84, 115, 103, 77, 44, 84, 134, 140, 77, 224, 176, 242, 254, 171, 115, 193, 29]

Не повторяйте строки для двоичных файлов

Не делайте следующее - это тянет кусок произвольного размера, пока не дойдет до символа новой строки - слишком медленный, когда чанки слишком малы и, возможно, слишком велики:

    with open(path, 'rb') as file:
        for chunk in file: # text newline iteration - not for bytes
            for byte in chunk:
                yield byte

Вышесказанное подходит только для того, что является семантически читаемыми текстовыми файлами (такими как обычный текст, код, разметка, разметка и т. Д.... по сути, все, что закодировано в ascii, utf, латинице и т. Д.).

Чтобы прочитать файл - по одному байту за раз (игнорируя буферизацию) - вы можете использовать два аргумента iter(callable, sentinel) встроенная функция:

with open(filename, 'rb') as file:
    for byte in iter(lambda: file.read(1), b''):
        # Do stuff with byte

Это вызывает file.read(1) пока ничего не вернется b'' (пустая строка). Память не увеличивается неограниченно для больших файлов. Вы могли бы пройти buffering=0 в open(), чтобы отключить буферизацию - это гарантирует, что за одну итерацию читается только один байт (медленно).

with -statement автоматически закрывает файл - в том числе и в том случае, если приведенный ниже код вызывает исключение.

Несмотря на наличие внутренней буферизации по умолчанию, по-прежнему неэффективно обрабатывать по одному байту за раз. Например, вот blackhole.py утилита, которая ест все, что ей дано:

#!/usr/bin/env python3
"""Discard all input. `cat > /dev/null` analog."""
import sys
from functools import partial
from collections import deque

chunksize = int(sys.argv[1]) if len(sys.argv) > 1 else (1 << 15)
deque(iter(partial(sys.stdin.detach().read, chunksize), b''), maxlen=0)

Пример:

$ dd if=/dev/zero bs=1M count=1000 | python3 blackhole.py

Обрабатывает ~1,5 ГБ / с, когда chunksize == 32768 на моей машине и только ~7,5 МБ / с при chunksize == 1, То есть чтение в один байт за один раз происходит в 200 раз медленнее. Примите это во внимание, если вы можете переписать свою обработку, чтобы использовать более одного байта за раз, и если вам нужна производительность.

mmap позволяет рассматривать файл как bytearray и файловый объект одновременно. Он может служить альтернативой загрузке всего файла в память, если вам нужен доступ к обоим интерфейсам. В частности, вы можете перебирать один байт за раз по отображенному в памяти файлу, просто используя обычный for -loop:

from mmap import ACCESS_READ, mmap

with open(filename, 'rb', 0) as f, mmap(f.fileno(), 0, access=ACCESS_READ) as s:
    for byte in s: # length is equal to the current file size
        # Do stuff with byte

mmap поддерживает обозначение среза. Например, mm[i:i+len] возвращается len байты из файла, начиная с позиции i, Протокол менеджера контекста не поддерживается до Python 3.2; тебе нужно позвонить mm.close() явно в этом случае. Перебирая каждый байт используя mmap потребляет больше памяти, чем file.read(1), но mmap на порядок быстрее.

Подводя итог всем блестящим моментам Крисси, Скурмеделя, Бена Хойта и Питера Хансена, это было бы оптимальным решением для обработки двоичного файла по одному байту за раз:

with open("myfile", "rb") as f:
    while True:
        byte = f.read(1)
        if not byte:
            break
        do_stuff_with(ord(byte))

Для версий Python 2.6 и выше, потому что:

  • внутренние буферы Python - не нужно читать куски
  • СУХОЙ принцип - не повторяйте строку чтения
  • с оператором обеспечивает чистое закрытие файла
  • 'byte' оценивается как false, когда байтов больше нет (не, если байт равен нулю)

Или используйте решение JF Sebastians для улучшения скорости

from functools import partial

with open(filename, 'rb') as file:
    for byte in iter(partial(file.read, 1), b''):
        # Do stuff with byte

Или, если вы хотите, чтобы это была функция генератора, как продемонстрировано codeape:

def bytes_from_file(filename):
    with open(filename, "rb") as f:
        while True:
            byte = f.read(1)
            if not byte:
                break
            yield(ord(byte))

# example:
for b in bytes_from_file('filename'):
    do_stuff_with(b)

Сам по себе этот пост не является прямым ответом на вопрос. Вместо этого это управляемый данными расширяемый эталонный тест, который можно использовать для сравнения многих ответов (и вариантов использования новых функций, добавленных в более поздних, более современных версиях Python), которые были опубликованы на этот вопрос - и поэтому должны поможет определить, какой из них имеет лучшую производительность.

В некоторых случаях я модифицировал код в указанном ответе, чтобы сделать его совместимым с платформой тестирования.

Во-первых, вот результаты последних версий Python 2 и 3:

Fastest to slowest execution speeds with 32-bit Python 2.7.16
  numpy version 1.16.5
  Test file size: 1,024 KiB
  100 executions, best of 3 repetitions

1                  Tcll (array.array) :   3.8943 secs, rel speed   1.00x,   0.00% slower (262.95 KiB/sec)
2  Vinay Sajip (read all into memory) :   4.1164 secs, rel speed   1.06x,   5.71% slower (248.76 KiB/sec)
3            codeape + iter + partial :   4.1616 secs, rel speed   1.07x,   6.87% slower (246.06 KiB/sec)
4                             codeape :   4.1889 secs, rel speed   1.08x,   7.57% slower (244.46 KiB/sec)
5               Vinay Sajip (chunked) :   4.1977 secs, rel speed   1.08x,   7.79% slower (243.94 KiB/sec)
6           Aaron Hall (Py 2 version) :   4.2417 secs, rel speed   1.09x,   8.92% slower (241.41 KiB/sec)
7                     gerrit (struct) :   4.2561 secs, rel speed   1.09x,   9.29% slower (240.59 KiB/sec)
8                     Rick M. (numpy) :   8.1398 secs, rel speed   2.09x, 109.02% slower (125.80 KiB/sec)
9                           Skurmedel :  31.3264 secs, rel speed   8.04x, 704.42% slower ( 32.69 KiB/sec)

Benchmark runtime (min:sec) - 03:26

Fastest to slowest execution speeds with 32-bit Python 3.8.0
  numpy version 1.17.4
  Test file size: 1,024 KiB
  100 executions, best of 3 repetitions

1  Vinay Sajip + "yield from" + "walrus operator" :   3.5235 secs, rel speed   1.00x,   0.00% slower (290.62 KiB/sec)
2                       Aaron Hall + "yield from" :   3.5284 secs, rel speed   1.00x,   0.14% slower (290.22 KiB/sec)
3         codeape + iter + partial + "yield from" :   3.5303 secs, rel speed   1.00x,   0.19% slower (290.06 KiB/sec)
4                      Vinay Sajip + "yield from" :   3.5312 secs, rel speed   1.00x,   0.22% slower (289.99 KiB/sec)
5      codeape + "yield from" + "walrus operator" :   3.5370 secs, rel speed   1.00x,   0.38% slower (289.51 KiB/sec)
6                          codeape + "yield from" :   3.5390 secs, rel speed   1.00x,   0.44% slower (289.35 KiB/sec)
7                                      jfs (mmap) :   4.0612 secs, rel speed   1.15x,  15.26% slower (252.14 KiB/sec)
8              Vinay Sajip (read all into memory) :   4.5948 secs, rel speed   1.30x,  30.40% slower (222.86 KiB/sec)
9                        codeape + iter + partial :   4.5994 secs, rel speed   1.31x,  30.54% slower (222.64 KiB/sec)
10                                        codeape :   4.5995 secs, rel speed   1.31x,  30.54% slower (222.63 KiB/sec)
11                          Vinay Sajip (chunked) :   4.6110 secs, rel speed   1.31x,  30.87% slower (222.08 KiB/sec)
12                      Aaron Hall (Py 2 version) :   4.6292 secs, rel speed   1.31x,  31.38% slower (221.20 KiB/sec)
13                             Tcll (array.array) :   4.8627 secs, rel speed   1.38x,  38.01% slower (210.58 KiB/sec)
14                                gerrit (struct) :   5.0816 secs, rel speed   1.44x,  44.22% slower (201.51 KiB/sec)
15                 Rick M. (numpy) + "yield from" :  11.8084 secs, rel speed   3.35x, 235.13% slower ( 86.72 KiB/sec)
16                                      Skurmedel :  11.8806 secs, rel speed   3.37x, 237.18% slower ( 86.19 KiB/sec)
17                                Rick M. (numpy) :  13.3860 secs, rel speed   3.80x, 279.91% slower ( 76.50 KiB/sec)

Benchmark runtime (min:sec) - 04:47

Я также запустил его с гораздо большим тестовым файлом 10 МиБ (запуск которого занял почти час) и получил результаты производительности, которые были сопоставимы с показанными выше.

Вот код, использованный для тестирования:

from __future__ import print_function
import array
import atexit
from collections import deque, namedtuple
import io
from mmap import ACCESS_READ, mmap
import numpy as np
from operator import attrgetter
import os
import random
import struct
import sys
import tempfile
from textwrap import dedent
import time
import timeit
import traceback

try:
    xrange
except NameError:  # Python 3
    xrange = range


class KiB(int):
    """ KibiBytes - multiples of the byte units for quantities of information. """
    def __new__(self, value=0):
        return 1024*value


BIG_TEST_FILE = 1  # MiBs or 0 for a small file.
SML_TEST_FILE = KiB(64)
EXECUTIONS = 100  # Number of times each "algorithm" is executed per timing run.
TIMINGS = 3  # Number of timing runs.
CHUNK_SIZE = KiB(8)
if BIG_TEST_FILE:
    FILE_SIZE = KiB(1024) * BIG_TEST_FILE
else:
    FILE_SIZE = SML_TEST_FILE  # For quicker testing.

# Common setup for all algorithms -- prefixed to each algorithm's setup.
COMMON_SETUP = dedent("""
    # Make accessible in algorithms.
    from __main__ import array, deque, get_buffer_size, mmap, np, struct
    from __main__ import ACCESS_READ, CHUNK_SIZE, FILE_SIZE, TEMP_FILENAME
    from functools import partial
    try:
        xrange
    except NameError:  # Python 3
        xrange = range
""")


def get_buffer_size(path):
    """ Determine optimal buffer size for reading files. """
    st = os.stat(path)
    try:
        bufsize = st.st_blksize # Available on some Unix systems (like Linux)
    except AttributeError:
        bufsize = io.DEFAULT_BUFFER_SIZE
    return bufsize

# Utility primarily for use when embedding additional algorithms into benchmark.
VERIFY_NUM_READ = """
    # Verify generator reads correct number of bytes (assumes values are correct).
    bytes_read = sum(1 for _ in file_byte_iterator(TEMP_FILENAME))
    assert bytes_read == FILE_SIZE, \
           'Wrong number of bytes generated: got {:,} instead of {:,}'.format(
                bytes_read, FILE_SIZE)
"""

TIMING = namedtuple('TIMING', 'label, exec_time')

class Algorithm(namedtuple('CodeFragments', 'setup, test')):

    # Default timeit "stmt" code fragment.
    _TEST = """
        #for b in file_byte_iterator(TEMP_FILENAME):  # Loop over every byte.
        #    pass  # Do stuff with byte...
        deque(file_byte_iterator(TEMP_FILENAME), maxlen=0)  # Data sink.
    """

    # Must overload __new__ because (named)tuples are immutable.
    def __new__(cls, setup, test=None):
        """ Dedent (unindent) code fragment string arguments.
        Args:
          `setup` -- Code fragment that defines things used by `test` code.
                     In this case it should define a generator function named
                     `file_byte_iterator()` that will be passed that name of a test file
                     of binary data. This code is not timed.
          `test` -- Code fragment that uses things defined in `setup` code.
                    Defaults to _TEST. This is the code that's timed.
        """
        test =  cls._TEST if test is None else test  # Use default unless one is provided.

        # Uncomment to replace all performance tests with one that verifies the correct
        # number of bytes values are being generated by the file_byte_iterator function.
        #test = VERIFY_NUM_READ

        return tuple.__new__(cls, (dedent(setup), dedent(test)))


algorithms = {

    'Aaron Hall (Py 2 version)': Algorithm("""
        def file_byte_iterator(path):
            with open(path, "rb") as file:
                callable = partial(file.read, 1024)
                sentinel = bytes() # or b''
                for chunk in iter(callable, sentinel):
                    for byte in chunk:
                        yield byte
    """),

    "codeape": Algorithm("""
        def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
            with open(filename, "rb") as f:
                while True:
                    chunk = f.read(chunksize)
                    if chunk:
                        for b in chunk:
                            yield b
                    else:
                        break
    """),

    "codeape + iter + partial": Algorithm("""
        def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
            with open(filename, "rb") as f:
                for chunk in iter(partial(f.read, chunksize), b''):
                    for b in chunk:
                        yield b
    """),

    "gerrit (struct)": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                fmt = '{}B'.format(FILE_SIZE)  # Reads entire file at once.
                for b in struct.unpack(fmt, f.read()):
                    yield b
    """),

    'Rick M. (numpy)': Algorithm("""
        def file_byte_iterator(filename):
            for byte in np.fromfile(filename, 'u1'):
                yield byte
    """),

    "Skurmedel": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                byte = f.read(1)
                while byte:
                    yield byte
                    byte = f.read(1)
    """),

    "Tcll (array.array)": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                arr = array.array('B')
                arr.fromfile(f, FILE_SIZE)  # Reads entire file at once.
                for b in arr:
                    yield b
    """),

    "Vinay Sajip (read all into memory)": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                bytes_read = f.read()  # Reads entire file at once.
            for b in bytes_read:
                yield b
    """),

    "Vinay Sajip (chunked)": Algorithm("""
        def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
            with open(filename, "rb") as f:
                chunk = f.read(chunksize)
                while chunk:
                    for b in chunk:
                        yield b
                    chunk = f.read(chunksize)
    """),

}  # End algorithms

#
# Versions of algorithms that will only work in certain releases (or better) of Python.
#
if sys.version_info >= (3, 3):
    algorithms.update({

        'codeape + iter + partial + "yield from"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    for chunk in iter(partial(f.read, chunksize), b''):
                        yield from chunk
        """),

        'codeape + "yield from"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    while True:
                        chunk = f.read(chunksize)
                        if chunk:
                            yield from chunk
                        else:
                            break
        """),

        "jfs (mmap)": Algorithm("""
            def file_byte_iterator(filename):
                with open(filename, "rb") as f, \
                     mmap(f.fileno(), 0, access=ACCESS_READ) as s:
                    yield from s
        """),

        'Rick M. (numpy) + "yield from"': Algorithm("""
            def file_byte_iterator(filename):
            #    data = np.fromfile(filename, 'u1')
                yield from np.fromfile(filename, 'u1')
        """),

        'Vinay Sajip + "yield from"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    chunk = f.read(chunksize)
                    while chunk:
                        yield from chunk  # Added in Py 3.3
                        chunk = f.read(chunksize)
        """),

    })  # End Python 3.3 update.

if sys.version_info >= (3, 5):
    algorithms.update({

        'Aaron Hall + "yield from"': Algorithm("""
            from pathlib import Path

            def file_byte_iterator(path):
                ''' Given a path, return an iterator over the file
                    that lazily loads the file.
                '''
                path = Path(path)
                bufsize = get_buffer_size(path)

                with path.open('rb') as file:
                    reader = partial(file.read1, bufsize)
                    for chunk in iter(reader, bytes()):
                        yield from chunk
        """),

    })  # End Python 3.5 update.

if sys.version_info >= (3, 8, 0):
    algorithms.update({

        'Vinay Sajip + "yield from" + "walrus operator"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    while chunk := f.read(chunksize):
                        yield from chunk  # Added in Py 3.3
        """),

        'codeape + "yield from" + "walrus operator"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    while chunk := f.read(chunksize):
                        yield from chunk
        """),

    })  # End Python 3.8.0 update.update.


#### Main ####

def main():
    global TEMP_FILENAME

    def cleanup():
        """ Clean up after testing is completed. """
        try:
            os.remove(TEMP_FILENAME)  # Delete the temporary file.
        except Exception:
            pass

    atexit.register(cleanup)

    # Create a named temporary binary file of pseudo-random bytes for testing.
    fd, TEMP_FILENAME = tempfile.mkstemp('.bin')
    with os.fdopen(fd, 'wb') as file:
         os.write(fd, bytearray(random.randrange(256) for _ in range(FILE_SIZE)))

    # Execute and time each algorithm, gather results.
    start_time = time.time()  # To determine how long testing itself takes.

    timings = []
    for label in algorithms:
        try:
            timing = TIMING(label,
                            min(timeit.repeat(algorithms[label].test,
                                              setup=COMMON_SETUP + algorithms[label].setup,
                                              repeat=TIMINGS, number=EXECUTIONS)))
        except Exception as exc:
            print('{} occurred timing the algorithm: "{}"\n  {}'.format(
                    type(exc).__name__, label, exc))
            traceback.print_exc(file=sys.stdout)  # Redirect to stdout.
            sys.exit(1)
        timings.append(timing)

    # Report results.
    print('Fastest to slowest execution speeds with {}-bit Python {}.{}.{}'.format(
            64 if sys.maxsize > 2**32 else 32, *sys.version_info[:3]))
    print('  numpy version {}'.format(np.version.full_version))
    print('  Test file size: {:,} KiB'.format(FILE_SIZE // KiB(1)))
    print('  {:,d} executions, best of {:d} repetitions'.format(EXECUTIONS, TIMINGS))
    print()

    longest = max(len(timing.label) for timing in timings)  # Len of longest identifier.
    ranked = sorted(timings, key=attrgetter('exec_time')) # Sort so fastest is first.
    fastest = ranked[0].exec_time
    for rank, timing in enumerate(ranked, 1):
        print('{:<2d} {:>{width}} : {:8.4f} secs, rel speed {:6.2f}x, {:6.2f}% slower '
              '({:6.2f} KiB/sec)'.format(
                    rank,
                    timing.label, timing.exec_time, round(timing.exec_time/fastest, 2),
                    round((timing.exec_time/fastest - 1) * 100, 2),
                    (FILE_SIZE/timing.exec_time) / KiB(1),  # per sec.
                    width=longest))
    print()
    mins, secs = divmod(time.time()-start_time, 60)
    print('Benchmark runtime (min:sec) - {:02d}:{:02d}'.format(int(mins),
                                                               int(round(secs))))

main()

Python 3, прочитайте все файлы сразу:

with open("filename", "rb") as binary_file:
    # Read the whole file at once
    data = binary_file.read()
    print(data)

Вы можете использовать все, что хотите, используя data переменная.

Попробовав все вышеперечисленное и воспользовавшись ответом @Aaron Hall, я получил ошибки памяти для файла размером ~90 МБ на компьютере под управлением Windows 10, 8 ГБ ОЗУ и 32-разрядной версии Python 3.5. Коллега рекомендовал мне использовать numpy вместо этого и он творит чудеса.

Безусловно, самым быстрым для чтения всего двоичного файла (который я тестировал) является:

import numpy as np

file = "binary_file.bin"
data = np.fromfile(file, 'u1')

Ссылка

Множество людей быстрее, чем любые другие методы. Надеюсь, это поможет кому-то!

Если у вас есть много двоичных данных для чтения, вы можете рассмотреть модуль struct. Это задокументировано как преобразование "между типами C и Python", но, конечно, байты являются байтами, и не имеет значения, были ли они созданы как типы C. Например, если ваши двоичные данные содержат два 2-байтовых целых и одно 4-байтовое целое, вы можете прочитать их следующим образом (пример взят из struct документация):

>>> struct.unpack('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03')
(1, 2, 3)

Это может оказаться более удобным, быстрым или иным, чем явным циклическим перемещением по содержимому файла.

Если вы ищете что-то быстрое, вот метод, который я использовал, который работал годами:

from array import array

with open( path, 'rb' ) as file:
    data = array( 'B', file.read() ) # buffer the file

# evaluate it's data
for byte in data:
    v = byte # int value
    c = chr(byte)

если вы хотите перебирать символы вместо целых, вы можете просто использовать data = file.read(), который должен быть объектом bytes() в py3.

для большого размера я думаю, что использование генератора не будет плохим, этот ответ предназначен для чтения чего-то вроде файла, хотя @codeapp имеет аналогичный ответ, я думаю, что удаление внутреннего цикла будет иметь больше смысла.

      def read_chunk(file_object, chunk_size=125):
    while True:
        file =  file_object.read(chunk_size)
        if not file:
            break
        yield file


#sample use 
buffer = io.BytesIO()
file = open('myfile', 'r')
for chunk in read_chunk(file):
    buffer.write(chunk)
buffer.seek(0)
// save the file or do whatever you want here

вы все еще можете использовать его как обычный список, я не думаю, что это полезно, но

      file_list = list(read_chunk(file, chunk_size=10000))
for i in file_list:
    # do something

а также получить индекс каждого фрагмента

      for index, chunk in enumurate(read_chunk(file, chunk_size=10000)):
    #use the index as a number index
    # you can try and get the size of each chunk with this 
    length = len(chunk)

Обратите внимание, обратите внимание на размер файла, и chunk_size всегда указывается в байтах.

Вот пример чтения данных Network endian с использованием Numpy fromfile, обращаясь к комментариям @Nirmal выше:

dtheader= np.dtype([('Start Name','b', (4,)),
                ('Message Type', np.int32, (1,)),
                ('Instance', np.int32, (1,)),
                ('NumItems', np.int32, (1,)),
                ('Length', np.int32, (1,)),
                ('ComplexArray', np.int32, (1,))])
dtheader=dtheader.newbyteorder('>')

headerinfo = np.fromfile(iqfile, dtype=dtheader, count=1)

print(raw['Start Name'])

Надеюсь, это поможет. Проблема в том, что fromfile не распознает и EOF и позволяет корректно выйти из цикла для файлов произвольного размера.

Другие вопросы по тегам