Почему JIT так плохо справляется с устранением связанных проверок?

Я тестирую возможности исключения HotSpot JIT для связанных проверок. Вот две версии одной и той же реализации heapsort, одна использует обычное индексирование массива, другая sun.misc.Unsafe API, без обязательных проверок:

public class HeapSort {
    // copied from http://en.wikibooks.org/wiki/Algorithm_Implementation/Sorting/Heapsort#C
    static int heapSortSimple(int[] arr) {
        int t;
        int n = arr.length, parent = n / 2, index, childI;
        while (true) {
            if (parent > 0) {
                t = arr[--parent]; // 1, i. e. first indexing
            } else {
                if (--n == 0) break;
                t = arr[n]; // 2
                arr[n] = arr[0]; // 3, 4
            }
            index = parent;
            childI = (index << 1) + 1;
            while (childI < n) {
                int childV = arr[childI]; // 5
                int right;
                if (childI + 1 < n && (right = arr[childI + 1]) > childV) { // 6
                    childI++;
                    childV = right;
                }
                if (childV > t) {
                    arr[index] = childV; // 7
                    index = childI;
                    childI = (index << 1) + 1;
                } else {
                    break;
                }
            }
            arr[index] = t; // 8
        }
        return arr[arr.length - 1];
    }

    static int heapSortUnsafe(int[] arr) {
        int t;
        long n = arr.length * INT_SCALE, parent = (arr.length / 2) * INT_SCALE, index, childI;
        while (true) {
            if (parent > 0) {
                t = U.getInt(arr, INT_BASE + (parent -= INT_SCALE));
            } else {
                if ((n -= INT_SCALE) == 0) break;
                t = U.getInt(arr, INT_BASE + n);
                U.putInt(arr, INT_BASE + n, U.getInt(arr, INT_BASE));
            }
            index = parent;
            childI = (index << 1) + INT_SCALE;
            while (childI < n) {
                int childV = U.getInt(arr, INT_BASE + childI);
                int right;
                if (childI + INT_SCALE < n &&
                        (right = U.getInt(arr, INT_BASE + (childI + INT_SCALE))) > childV) {
                    childI += INT_SCALE;
                    childV = right;
                }
                if (childV > t) {
                    U.putInt(arr, INT_BASE + index, childV);
                    index = childI;
                    childI = (index << 1) + INT_SCALE;
                } else {
                    break;
                }
            }
            U.putInt(arr, INT_BASE + index, t);
        }
        return arr[arr.length - 1];
    }

    @OutputTimeUnit(TimeUnit.MICROSECONDS)
    @BenchmarkMode(Mode.AverageTime)
    @Warmup(iterations = 5, time = 1)
    @Measurement(iterations = 10, time = 1)
    @State(Scope.Thread)
    @Threads(1)
    @Fork(1)
    public static class Benchmarks {
        static final int N = 1024;
        int[] a = new int[N];

        @Setup(Level.Invocation)
        public void fill() {
            Random r = ThreadLocalRandom.current();
            for (int i = 0; i < N; i++) {
                a[i] = r.nextInt();
            }
        }

        @GenerateMicroBenchmark
        public static int simple(Benchmarks st) {
            int[] arr = st.a;
            return heapSortSimple(arr);
        }

        @GenerateMicroBenchmark
        public static int unsafe(Benchmarks st) {
            int[] arr = st.a;
            return heapSortUnsafe(arr);
        }
    }

    public static void main(String[] args) {
        Benchmarks bs = new Benchmarks();

        // verify simple sort
        bs.fill();
        int[] a1 = bs.a;
        int[] a2 = a1.clone();
        Arrays.sort(a2);
        heapSortSimple(a1);
        if (!Arrays.equals(a2, a1))
            throw new AssertionError();

        // let JIT to generate optimized assembly
        for (int i = 0; i < 10000; i++) {
            bs.fill();
            heapSortSimple(bs.a);
        }

        // verify unsafe sort
        bs.fill();
        a1 = bs.a;
        a2 = a1.clone();
        Arrays.sort(a2);
        heapSortUnsafe(a1);
        if (!Arrays.equals(a2, a1))
            throw new AssertionError();

        for (int i = 0; i < 10000; i++) {
            bs.fill();
            heapSortUnsafe(bs.a);
        }
    }

    static final Unsafe U;
    static final long INT_BASE;
    static final long INT_SCALE = 4;

    static {
        try {
            Field f = Unsafe.class.getDeclaredField("theUnsafe");
            f.setAccessible(true);
            U = (Unsafe) f.get(null);
        } catch (Exception e) {
            throw new IllegalStateException(e);
        }
        INT_BASE = U.arrayBaseOffset(int[].class);
    }
}

Небезопасная версия стабильно на 13% быстрее как для процессоров Intel SB, так и для процессоров AMD K10.

Я посмотрел в сгенерированную сборку:

  • проверка нижней границы устраняется для всех операций индексирования (1-8)
  • проверка верхней границы исключена только для операции 5, проверки для 2 и 3 объединены
  • да, для операции 4 (arr[0]) на каждой итерации проверяется, что arr.length != 0

Очевидно, что все связанные ветки проверки предсказаны идеально, поэтому сортировка кучи с простой индексацией медленнее, чем небезопасная, только на 13%.

Я определенно подумал, что работа JIT оптимизирует связанные проверки, по крайней мере, для операций 1, 2 и 3, где индекс постоянно уменьшается от некоторого значения ниже длины массива до нуля.

Вопрос в заголовке: почему HotSpot JIT в этом случае так плохо справляется с устранением связанных проверок?

1 ответ

Я не думаю, что все латексы ограничены.

Передача массива нулевой длины приведет к IOOB. Попробуйте if (n==0) return до цикла.

Другие вопросы по тегам