Увеличьте объем памяти Java на Spark для создания больших хэш-связей
В настоящее время я пытаюсь выполнить запрос TPC-H для SnappyData. Сначала запрос дал мне ошибку, говоря
ОШИБКА 38000: (SQLState=38000 Severity=-1) (Сервер =localhost[1528], Поток [DRDAConnThread_29,5,gemfirexd.daemons]) Исключение "Обе стороны этого объединения находятся за пределами порога широковещания, и вычисление может быть непозволительным дорого. Чтобы явно включить его, пожалуйста, установите spark.sql.crossJoin.enabled = true;' был брошен при оценке выражения.
После включения sql-перекрестных соединений spark и повторного выполнения запроса выдается сообщение об ошибке:
java.lang.RuntimeException: Can't acquire 1049600 bytes memory to build hash relation, got 74332 bytes
at org.apache.spark.sql.execution.joins.HashedRelationCache$.get(LocalJoin.scala:621)
at org.apache.spark.sql.execution.joins.HashedRelationCache.get(LocalJoin.scala)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.init(Unknown Source)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8.apply(WholeStageCodegenExec.scala:367)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8.apply(WholeStageCodegenExec.scala:364)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:820)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:820)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.SparkException: Can't acquire 1049600 bytes memory to build hash relation, got 74332 bytes
at org.apache.spark.sql.execution.joins.LongToUnsafeRowMap.ensureAcquireMemory(HashedRelation.scala:414)
at org.apache.spark.sql.execution.joins.LongToUnsafeRowMap.init(HashedRelation.scala:424)
at org.apache.spark.sql.ex
Пожалуйста, дайте мне знать, как увеличить объем памяти для построения хеш-отношений.
На всякий случай, запрос находится ниже, и я пытаюсь запустить его на наборе данных 1 ГБ (я пробовал запрос на пустом наборе данных, и он работает). TPC-H Query 16:
SELECT i_name,
substr(i_data, 1, 3) AS brand,
i_price,
count(DISTINCT (pmod((s_w_id * s_i_id),10000))) AS supplier_cnt
FROM stock,
item
WHERE i_id = s_i_id
AND i_data NOT LIKE 'zz%'
AND (pmod((s_w_id * s_i_id),10000) NOT IN
(SELECT su_suppkey
FROM supplier
WHERE su_comment LIKE '%bad%'))
GROUP BY i_name,
substr(i_data, 1, 3),
i_price
ORDER BY supplier_cnt DESC;
1 ответ
В файле конфигурации для сервера (conf/servers) установите для памяти jvm значение -J-Xms5g, поэтому conf / server будет выглядеть как localhost -locators=localhost:10334 -J-Xms5g