Автоматически генерировать новые имена переменных, используя dplyr mutate

Я хотел бы создавать имена переменных динамически при использовании dplyr; хотя, я был бы в порядке с решением не-dplyr также.

Например:

data(iris)
library(dplyr) 

iris <- iris %>%
  group_by(Species) %>%
  mutate(
    lag_Sepal.Length = lag(Sepal.Length),
    lag_Sepal.Width  = lag(Sepal.Width),
    lag_Petal.Length = lag(Petal.Length)
  ) %>%
  ungroup

head(iris)

    Sepal.Length Sepal.Width Petal.Length Petal.Width Species lag_Sepal.Length lag_Sepal.Width
             (dbl)       (dbl)        (dbl)       (dbl)  (fctr)            (dbl)           (dbl)
    1          5.1         3.5          1.4         0.2  setosa               NA              NA
    2          4.9         3.0          1.4         0.2  setosa              5.1             3.5
    3          4.7         3.2          1.3         0.2  setosa              4.9             3.0
    4          4.6         3.1          1.5         0.2  setosa              4.7             3.2
    5          5.0         3.6          1.4         0.2  setosa              4.6             3.1
    6          5.4         3.9          1.7         0.4  setosa              5.0             3.6
    Variables not shown: lag_Petal.Length (dbl)

Но вместо того, чтобы сделать это три раза, я хочу создать 100 таких "лаговых" переменных, которые принимают имя: lag_original name name. Я пытаюсь выяснить, как это сделать, не набирая имя новой переменной 100 раз, но у меня ничего не получится.

Я посмотрел на этот пример и этот пример в другом месте на SO. Они похожи, но я не могу собрать воедино конкретное решение, которое мне нужно. Любая помощь приветствуется!

редактировать
Спасибо @BenFasoli за вдохновение. Я взял его ответ и немного подправил его, чтобы найти решение, в котором я нуждался. Я также использовал этот блог RStudio и этот пост. "Отставание" в имени переменной - это трейлинг, а не лидерство, но я могу с этим смириться.

Мой окончательный код опубликован здесь на случай, если он пригодится кому-либо еще:

lagged <- iris %>%
  group_by(Species) %>%
  mutate_at(
    vars(Sepal.Length:Petal.Length),
    funs("lag" = lag)) %>%
  ungroup

# A tibble: 6 x 8
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species Sepal.Length_lag Sepal.Width_lag
         <dbl>       <dbl>        <dbl>       <dbl>  <fctr>            <dbl>           <dbl>
1          5.1         3.5          1.4         0.2  setosa               NA              NA
2          4.9         3.0          1.4         0.2  setosa              5.1             3.5
3          4.7         3.2          1.3         0.2  setosa              4.9             3.0
4          4.6         3.1          1.5         0.2  setosa              4.7             3.2
5          5.0         3.6          1.4         0.2  setosa              4.6             3.1
6          5.4         3.9          1.7         0.4  setosa              5.0             3.6
# ... with 1 more variables: Petal.Length_lag <dbl>

3 ответа

Решение

Ты можешь использовать mutate_all (или же mutate_at для конкретных столбцов), затем предварять lag_ к именам столбцов.

data(iris)
library(dplyr) 

lag_iris <- iris %>%
  group_by(Species) %>%
  mutate_all(funs(lag(.))) %>%
  ungroup
colnames(lag_iris) <- paste0('lag_', colnames(lag_iris))

head(lag_iris)

  lag_Sepal.Length lag_Sepal.Width lag_Petal.Length lag_Petal.Width lag_Species
             <dbl>           <dbl>            <dbl>           <dbl>      <fctr>
1               NA              NA               NA              NA      setosa
2              5.1             3.5              1.4             0.2      setosa
3              4.9             3.0              1.4             0.2      setosa
4              4.7             3.2              1.3             0.2      setosa
5              4.6             3.1              1.5             0.2      setosa
6              5.0             3.6              1.4             0.2      setosa

Вот подход data.table. Я выбрал столбцы с номерами в этом случае. Что вы хотите сделать, это выбрать имена столбцов и заранее создать новые имена столбцов. Затем вы подаете заявку shift(), который работает как lag() а также lead() в пакете dplyr, к каждому из выбранных вами столбцов.

library(data.table)

# Crate a df for this demo.
mydf <- iris

# Choose columns that you want to apply lag() and create new colnames.
cols = names(iris)[sapply(iris, is.numeric)]
anscols = paste("lag_", cols, sep = "")

# Apply shift() to each of the chosen columns.
setDT(mydf)[, (anscols) := shift(.SD, 1, type = "lag"),
            .SDcols = cols]

     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species lag_Sepal.Length lag_Sepal.Width
 1:          5.1         3.5          1.4         0.2    setosa               NA              NA
 2:          4.9         3.0          1.4         0.2    setosa              5.1             3.5
 3:          4.7         3.2          1.3         0.2    setosa              4.9             3.0
 4:          4.6         3.1          1.5         0.2    setosa              4.7             3.2
 5:          5.0         3.6          1.4         0.2    setosa              4.6             3.1
 ---                                                                                             
146:          6.7         3.0          5.2         2.3 virginica              6.7             3.3
147:          6.3         2.5          5.0         1.9 virginica              6.7             3.0
148:          6.5         3.0          5.2         2.0 virginica              6.3             2.5
149:          6.2         3.4          5.4         2.3 virginica              6.5             3.0
150:          5.9         3.0          5.1         1.8 virginica              6.2             3.4
     lag_Petal.Length lag_Petal.Width
  1:               NA              NA
  2:              1.4             0.2
  3:              1.4             0.2
  4:              1.3             0.2
  5:              1.5             0.2
 ---                                 
146:              5.7             2.5
147:              5.2             2.3
148:              5.0             1.9
149:              5.2             2.0
150:              5.4             2.3

Так как вы также довольны не-dplyr, попробуйте это:

lagger <- function(x, n) c(rep(NA,n), head(x,-n) )
iris[paste0("lag_", names(iris) )] <- lapply(iris, lagger, n=1)

head(iris,2)[-(1:5)]
#  lag_Sepal.Length lag_Sepal.Width lag_Petal.Length lag_Petal.Width lag_Species
#1               NA              NA               NA              NA          NA
#2              5.1             3.5              1.4             0.2           1
Другие вопросы по тегам