Ускорение векторизации алгоритм отслеживания глаз в NumPy
Я пытаюсь реализовать алгоритм отслеживания глаз Фабиана Тимма [ http://www.inb.uni-luebeck.de/publikationen/pdfs/TiBa11b.pdf%5D (находится здесь: [ http://thume.ca/projects/2012/11/04/simple-accurate-eye-center-tracking-in-opencv/]) в NumPy и OpenCV, и я столкнулся с проблемой. Я думаю, что векторизовал мою реализацию достаточно прилично, но она все еще не достаточно быстра для запуска в режиме реального времени и не обнаруживает учеников с такой точностью, как я надеялся. Я впервые использую NumPy, так что я не уверен, что сделал неправильно.
def find_pupil(eye):
eye_len = np.arange(eye.shape[0])
xx,yy = np.meshgrid(eye_len,eye_len) #coordinates
XX,YY = np.meshgrid(xx.ravel(),yy.ravel()) #all distance vectors
Dx,Dy = [YY-XX, YY-XX] #y2-y1, x2-x1 -- simpler this way because YY = XXT
Dlen = np.sqrt(Dx**2+Dy**2)
Dx,Dy = [Dx/Dlen, Dy/Dlen] #normalized
Gx,Gy = np.gradient(eye)
Gmagn = np.sqrt(Gx**2+Gy**2)
Gx,Gy = [Gx/Gmagn,Gy/Gmagn] #normalized
GX,GY = np.meshgrid(Gx.ravel(),Gy.ravel())
X = (GX*Dx+GY*Dy)**2
eye = cv2.bitwise_not(cv2.GaussianBlur(eye,(5,5),0.005*eye.shape[1])) #inverting and blurring eye for use as w
eyem = np.repeat(eye.ravel()[np.newaxis,:],eye.size,0)
C = (np.nansum(eyem*X, axis=0)/eye.size).reshape(eye.shape)
return np.unravel_index(C.argmax(), C.shape)
и остальная часть кода:
def find_eyes(face):
left_x, left_y = [int(floor(0.5 * face.shape[0])), int(floor(0.2 * face.shape[1]))]
right_x, right_y = [int(floor(0.1 * face.shape[0])), int(floor(0.2 * face.shape[1]))]
area = int(floor(0.2 * face.shape[0]))
left_eye = (left_x, left_y, area, area)
right_eye = (right_x, right_y, area, area)
return [left_eye,right_eye]
faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
video_capture = cv2.VideoCapture(0)
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE
)
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
eyes = find_eyes(roi_gray)
for (ex,ey,ew,eh) in eyes:
eye_gray = roi_gray[ey:ey+eh,ex:ex+ew]
eye_color = roi_color[ey:ey+eh,ex:ex+ew]
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(255,0,0),2)
px,py = find_pupil(eye_gray)
cv2.rectangle(eye_color,(px,py),(px+1,py+1),(255,0,0),2)
# Display the resulting frame
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()
1 ответ
Вы можете выполнять многие из этих операций, которые сохраняют реплицированные элементы, а затем выполняют некоторые математические операции, непосредственно выполняя математические операции после создания одноэлементных измерений, которые позволили бы NumPy broadcasting
, Таким образом, было бы два преимущества - оперативные операции для экономии памяти рабочей области и повышение производительности. Кроме того, в конце мы можем заменить nansum
Расчет с упрощенной версией. Таким образом, имея в виду всю эту философию, вот один измененный подход -
def find_pupil_v2(face, x, y, w, h):
eye = face[x:x+w,y:y+h]
eye_len = np.arange(eye.shape[0])
N = eye_len.size**2
eye_len_diff = eye_len[:,None] - eye_len
Dlen = np.sqrt(2*((eye_len_diff)**2))
Dxy0 = eye_len_diff/Dlen
Gx0,Gy0 = np.gradient(eye)
Gmagn = np.sqrt(Gx0**2+Gy0**2)
Gx,Gy = [Gx0/Gmagn,Gy0/Gmagn] #normalized
B0 = Gy[:,:,None]*Dxy0[:,None,:]
C0 = Gx[:,None,:]*Dxy0
X = ((C0.transpose(1,0,2)[:,None,:,:]+B0[:,:,None,:]).reshape(N,N))**2
eye1 = cv2.bitwise_not(cv2.GaussianBlur(eye,(5,5),0.005*eye.shape[1]))
C = (np.nansum(X,0)*eye1.ravel()/eye1.size).reshape(eye1.shape)
return np.unravel_index(C.argmax(), C.shape)
Там есть один repeat
все еще остается в нем в Dxy
, Можно было бы избежать этого шага и Dxy0
может быть подан непосредственно на шаг, который использует Dxy
дать нам X
, но я не работал через это. Все преобразовано в broadcasting
основан!
Проверка во время выполнения и проверка вывода -
In [539]: # Inputs with random elements
...: face = np.random.randint(0,10,(256,256)).astype('uint8')
...: x = 40
...: y = 60
...: w = 64
...: h = 64
...:
In [540]: find_pupil(face,x,y,w,h)
Out[540]: (32, 63)
In [541]: find_pupil_v2(face,x,y,w,h)
Out[541]: (32, 63)
In [542]: %timeit find_pupil(face,x,y,w,h)
1 loops, best of 3: 4.15 s per loop
In [543]: %timeit find_pupil_v2(face,x,y,w,h)
1 loops, best of 3: 529 ms per loop
Кажется, мы приближаемся к 8x
ускорив!