Создайте собственный Трансформер в PySpark ML
Я новичок в Spark SQL DataFrames и ML на них (PySpark). Как создать токенайзер костюма, который, например, удаляет стоп-слова и использует некоторые библиотеки из nltk? Могу ли я продлить один по умолчанию?
Благодарю.
1 ответ
Могу ли я продлить один по умолчанию?
На самом деле, нет. По умолчанию Tokenizer
это подкласс pyspark.ml.wrapper.JavaTransformer
и так же, как и другие трансфромеры и оценщики из pyspark.ml.feature
, делегирует фактическую обработку своему аналогу Scala. Поскольку вы хотите использовать Python, вы должны расширить pyspark.ml.pipeline.Transformer
непосредственно.
import nltk
from pyspark import keyword_only ## < 2.0 -> pyspark.ml.util.keyword_only
from pyspark.ml import Transformer
from pyspark.ml.param.shared import HasInputCol, HasOutputCol, Param
from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType, StringType
class NLTKWordPunctTokenizer(Transformer, HasInputCol, HasOutputCol):
@keyword_only
def __init__(self, inputCol=None, outputCol=None, stopwords=None):
super(NLTKWordPunctTokenizer, self).__init__()
self.stopwords = Param(self, "stopwords", "")
self._setDefault(stopwords=set())
kwargs = self._input_kwargs
self.setParams(**kwargs)
@keyword_only
def setParams(self, inputCol=None, outputCol=None, stopwords=None):
kwargs = self._input_kwargs
return self._set(**kwargs)
def setStopwords(self, value):
self._paramMap[self.stopwords] = value
return self
def getStopwords(self):
return self.getOrDefault(self.stopwords)
def _transform(self, dataset):
stopwords = self.getStopwords()
def f(s):
tokens = nltk.tokenize.wordpunct_tokenize(s)
return [t for t in tokens if t.lower() not in stopwords]
t = ArrayType(StringType())
out_col = self.getOutputCol()
in_col = dataset[self.getInputCol()]
return dataset.withColumn(out_col, udf(f, t)(in_col))
Пример использования (данные из ML - Особенности):
sentenceDataFrame = spark.createDataFrame([
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = NLTKWordPunctTokenizer(
inputCol="sentence", outputCol="words",
stopwords=set(nltk.corpus.stopwords.words('english')))
tokenizer.transform(sentenceDataFrame).show()
Для пользовательских Python Estimator
посмотрите, как бросить пользовательский оценщик в Pyll Spark Mllib
Answer Этот ответ зависит от внутреннего API и совместим с Spark 2.0.3, 2.1.1, 2.2.0 или более поздней версией ( SPARK-19348). Код, совместимый с предыдущими версиями Spark, см. В редакции 8.