Очевидная утечка пространства в варианте по алгоритму Брента "телепортирующаяся черепаха"
Я реализовывал вариант алгоритма "телепортирующейся черепахи" Брента, отображаемого по всем глубинным путям через N-дерево для целей сравнения значений двух различных структур данных, с моим собственным алгоритмом обратного отслеживания для отката циклов без исключения нециклических путей которые частично перекрываются с циклическими путями. Судя по всему, мой алгоритм верен (хотя у меня есть ощущение, что я должен это доказать, хотя у меня нет опыта в доказательстве чего-либо о коде), но я заметил сегодня, когда пытался запустить 1000000 циклов одинаковых тестов и не... равные тесты (контролируется testCount
) на 1-1024 узлах (контролируется maxNodeCount
) и 2-5 веток на узел (контролируется nodeSizeRange
) что он очень быстро съел все 8 ГБ ОЗУ в моей системе и быстро начал использовать большое количество подкачки, что вынудило меня его убить. Когда я уменьшил количество узлов до 1-512, он все еще быстро, но не так быстро, начал использовать оперативную память в моей системе, пока она, казалось бы, не превысила 6 ГБ ОЗУ (я не уверен, сколько ОЗУ она будет реально использовать, так как я оставил его работающим дома). На 1-256 узлах он, казалось бы, занимал несколько ГБ пространства, но не настолько, чтобы я на самом деле уделял много внимания.
Вопрос в том, почему он использует такие неприлично большие объемы ОЗУ, когда его требования к пространству должны масштабироваться на O(n), где n - это функция глубины самого глубокого пути через дерево до того, как какие-либо циклы пойманы, размера самого большого цикла в дереве, и число начальных точек цикла в дереве. Я не смог найти никаких очевидных мест, где в коде происходило бы поведение с утечкой пространства. Единственное, о чем я мог подумать, - это природа самого алгоритма Брента в сочетании с тем, что я держу стек для заданного пути вглубь; Сочетание того, что приращения между черепахами увеличиваются на 2^n, с очень глубокими путями с циклами и очень большими циклами, которые они могли бы фактически циклировать в течение очень длительных периодов времени, вызывая накопление большого количества стека до того, как циклы будут пойманы. Но так как Haskell печально известен утечками из космоса, это может быть просто обычная утечка из космоса, а не что-то алгоритмическое по своей природе, которое я мог бы упустить из виду.
(Правка; я понял, что это не может быть алгоритмическим, так как отношения между глубинами черепах и масштабами черепах таковы, что для данной глубины черепах d следующая глубина черепах ((d + 1) * 2) - 1; например, на глубине 1023 следующая глубина черепахи 2047.)
Вот мой код для алгоритма:
{-# LANGUAGE RecordWildCards, BangPatterns #-}
module EqualTree (Tree(..),
equal)
where
import Data.Array.IO (IOArray)
import Data.Array.MArray (readArray,
getBounds)
data Tree a = Value a | Node (Node a)
type Node a = IOArray Int (Tree a)
data Frame a = Frame { frameNodes :: !(Node a, Node a),
frameSiblings :: !(Maybe (Siblings a)),
frameTurtle :: !(Turtle a) }
data Siblings a = Siblings { siblingNodes :: !(Node a, Node a),
siblingIndex :: !Int }
data Turtle a = Turtle { turtleDepth :: !Int,
turtleScale :: !Int,
turtleNodes :: !(Node a, Node a) }
data EqState a = EqState { stateFrames :: [Frame a],
stateCycles :: [(Node a, Node a)],
stateDepth :: !Int }
data Unrolled a = Unrolled { unrolledNodes :: !(Node a, Node a),
unrolledState :: !(EqState a),
unrolledSiblings :: !(Maybe (Siblings a)) }
data NodeComparison = EqualNodes | NotEqualNodes | HalfEqualNodes
equal :: Eq a => Tree a -> Tree a -> IO Bool
equal tree0 tree1 =
let state = EqState { stateFrames = [], stateCycles = [], stateDepth = 0 }
in ascend state tree0 tree1 Nothing
ascend :: Eq a => EqState a -> Tree a -> Tree a -> Maybe (Siblings a) -> IO Bool
ascend state (Value value0) (Value value1) siblings =
if value0 == value1
then descend state siblings
else return False
ascend state (Node node0) (Node node1) siblings =
case memberNodes (node0, node1) (stateCycles state) of
EqualNodes -> descend state siblings
HalfEqualNodes -> return False
NotEqualNodes -> do
(_, bound0) <- getBounds node0
(_, bound1) <- getBounds node1
if bound0 == bound1
then
let turtleNodes = currentTurtleNodes state
state' = state { stateFrames =
newFrame state node0 node1 siblings :
stateFrames state,
stateDepth = (stateDepth state) + 1 }
checkDepth = nextTurtleDepth state'
in case turtleNodes of
Just turtleNodes' ->
case equalNodes (node0, node1) turtleNodes' of
EqualNodes -> beginRecovery state node0 node1 siblings
HalfEqualNodes -> return False
NotEqualNodes -> ascendFirst state' node0 node1
Nothing -> ascendFirst state' node0 node1
else return False
ascend _ _ _ _ = return False
ascendFirst :: Eq a => EqState a -> Node a -> Node a -> IO Bool
ascendFirst state node0 node1 = do
(_, bound) <- getBounds node0
tree0 <- readArray node0 0
tree1 <- readArray node1 0
if bound > 0
then let siblings = Siblings { siblingNodes = (node0, node1),
siblingIndex = 1 }
in ascend state tree0 tree1 (Just siblings)
else ascend state tree0 tree1 Nothing
descend :: Eq a => EqState a -> Maybe (Siblings a) -> IO Bool
descend state Nothing =
case stateFrames state of
[] -> return True
frame : rest ->
let state' = state { stateFrames = rest,
stateDepth = stateDepth state - 1 }
in descend state' (frameSiblings frame)
descend state (Just Siblings{..}) = do
let (node0, node1) = siblingNodes
(_, bound) <- getBounds node0
tree0 <- readArray node0 siblingIndex
tree1 <- readArray node1 siblingIndex
if siblingIndex < bound
then let siblings' = Siblings { siblingNodes = (node0, node1),
siblingIndex = siblingIndex + 1 }
in ascend state tree0 tree1 (Just siblings')
else ascend state tree0 tree1 Nothing
beginRecovery :: Eq a => EqState a -> Node a -> Node a -> Maybe (Siblings a)
-> IO Bool
beginRecovery state node0 node1 siblings =
let turtle = case stateFrames state of
[] -> error "must have first frame in stack"
frame : _ -> frameTurtle frame
distance = (stateDepth state + 1) - turtleDepth turtle
unrolledFrame = Unrolled { unrolledNodes = (node0, node1),
unrolledState = state,
unrolledSiblings = siblings }
in unrolledFrame `seq` unrollCycle state [unrolledFrame] (distance - 1)
unrollCycle :: Eq a => EqState a -> [Unrolled a] -> Int -> IO Bool
unrollCycle state unrolled !count
| count <= 0 = findCycleStart state unrolled
| otherwise =
case stateFrames state of
[] -> error "frame must be found"
frame : rest ->
let state' = state { stateFrames = rest,
stateDepth = stateDepth state - 1 }
unrolledFrame =
Unrolled { unrolledNodes = frameNodes frame,
unrolledState = state',
unrolledSiblings = frameSiblings frame }
in unrolledFrame `seq`
unrollCycle state' (unrolledFrame : unrolled) (count - 1)
findCycleStart :: Eq a => EqState a -> [Unrolled a] -> IO Bool
findCycleStart state unrolled =
case stateFrames state of
[] ->
return True
frame : [] ->
case memberUnrolled (frameNodes frame) unrolled of
(NotEqualNodes, _) -> error "node not in nodes unrolled"
(HalfEqualNodes, _) -> return False
(EqualNodes, Just (state, siblings)) ->
let state' =
state { stateCycles = frameNodes frame : stateCycles state }
in state' `seq` descend state' siblings
frame : rest@(prevFrame : _) ->
case memberUnrolled (frameNodes prevFrame) unrolled of
(EqualNodes, _) ->
let state' = state { stateFrames = rest,
stateDepth = stateDepth state - 1 }
unrolledFrame =
Unrolled { unrolledNodes = frameNodes frame,
unrolledState = state',
unrolledSiblings = frameSiblings frame }
unrolled' = updateUnrolled unrolledFrame unrolled
in unrolledFrame `seq` findCycleStart state' unrolled'
(HalfEqualNodes, _) -> return False
(NotEqualNodes, _) ->
case memberUnrolled (frameNodes frame) unrolled of
(NotEqualNodes, _) -> error "node not in nodes unrolled"
(HalfEqualNodes, _) -> return False
(EqualNodes, Just (state, siblings)) ->
let state' =
state { stateCycles = frameNodes frame : stateCycles state }
in state' `seq` descend state' siblings
updateUnrolled :: Unrolled a -> [Unrolled a] -> [Unrolled a]
updateUnrolled _ [] = []
updateUnrolled unrolled0 (unrolled1 : rest) =
case equalNodes (unrolledNodes unrolled0) (unrolledNodes unrolled1) of
EqualNodes -> unrolled0 : rest
NotEqualNodes -> unrolled1 : updateUnrolled unrolled0 rest
HalfEqualNodes -> error "this should not be possible"
memberUnrolled :: (Node a, Node a) -> [Unrolled a] ->
(NodeComparison, Maybe (EqState a, Maybe (Siblings a)))
memberUnrolled _ [] = (NotEqualNodes, Nothing)
memberUnrolled nodes (Unrolled{..} : rest) =
case equalNodes nodes unrolledNodes of
EqualNodes -> (EqualNodes, Just (unrolledState, unrolledSiblings))
HalfEqualNodes -> (HalfEqualNodes, Nothing)
NotEqualNodes -> memberUnrolled nodes rest
newFrame :: EqState a -> Node a -> Node a -> Maybe (Siblings a) -> Frame a
newFrame state node0 node1 siblings =
let turtle =
if (stateDepth state + 1) == nextTurtleDepth state
then Turtle { turtleDepth = stateDepth state + 1,
turtleScale = currentTurtleScale state * 2,
turtleNodes = (node0, node1) }
else case stateFrames state of
[] -> Turtle { turtleDepth = 1, turtleScale = 2,
turtleNodes = (node0, node1) }
frame : _ -> frameTurtle frame
in Frame { frameNodes = (node0, node1),
frameSiblings = siblings,
frameTurtle = turtle }
memberNodes :: (Node a, Node a) -> [(Node a, Node a)] -> NodeComparison
memberNodes _ [] = NotEqualNodes
memberNodes nodes0 (nodes1 : rest) =
case equalNodes nodes0 nodes1 of
NotEqualNodes -> memberNodes nodes0 rest
HalfEqualNodes -> HalfEqualNodes
EqualNodes -> EqualNodes
equalNodes :: (Node a, Node a) -> (Node a, Node a) -> NodeComparison
equalNodes (node0, node1) (node2, node3) =
if node0 == node2
then if node1 == node3
then EqualNodes
else HalfEqualNodes
else if node1 == node3
then HalfEqualNodes
else NotEqualNodes
currentTurtleNodes :: EqState a -> Maybe (Node a, Node a)
currentTurtleNodes state =
case stateFrames state of
[] -> Nothing
frame : _ -> Just . turtleNodes . frameTurtle $ frame
currentTurtleScale :: EqState a -> Int
currentTurtleScale state =
case stateFrames state of
[] -> 1
frame : _ -> turtleScale $ frameTurtle frame
nextTurtleDepth :: EqState a -> Int
nextTurtleDepth state =
case stateFrames state of
[] -> 1
frame : _ -> let turtle = frameTurtle frame
in turtleDepth turtle + turtleScale turtle
Вот наивная версия алгоритма, используемого тестовой программой.
{-# LANGUAGE RecordWildCards #-}
module NaiveEqualTree (Tree(..),
naiveEqual)
where
import Data.Array.IO (IOArray)
import Data.Array.MArray (readArray,
getBounds)
import EqualTree (Tree(..),
Node)
data Frame a = Frame { frameNodes :: !(Node a, Node a),
frameSiblings :: !(Maybe (Siblings a)) }
data Siblings a = Siblings { siblingNodes :: !(Node a, Node a),
siblingIndex :: !Int }
data NodeComparison = EqualNodes | NotEqualNodes | HalfEqualNodes
naiveEqual :: Eq a => Tree a -> Tree a -> IO Bool
naiveEqual tree0 tree1 = ascend [] tree0 tree1 Nothing
ascend :: Eq a => [Frame a] -> Tree a -> Tree a -> Maybe (Siblings a) -> IO Bool
ascend state (Value value0) (Value value1) siblings =
if value0 == value1
then descend state siblings
else return False
ascend state (Node node0) (Node node1) siblings =
case testNodes (node0, node1) state of
EqualNodes -> descend state siblings
HalfEqualNodes -> return False
NotEqualNodes -> do
(_, bound0) <- getBounds node0
(_, bound1) <- getBounds node1
if bound0 == bound1
then do
let frame = Frame { frameNodes = (node0, node1),
frameSiblings = siblings }
state' = frame : state
tree0 <- readArray node0 0
tree1 <- readArray node1 0
if bound0 > 0
then let siblings = Siblings { siblingNodes = (node0, node1),
siblingIndex = 1 }
in frame `seq` ascend state' tree0 tree1 (Just siblings)
else frame `seq` ascend state' tree0 tree1 Nothing
else return False
ascend _ _ _ _ = return False
descend :: Eq a => [Frame a] -> Maybe (Siblings a) -> IO Bool
descend state Nothing =
case state of
[] -> return True
frame : rest -> descend rest (frameSiblings frame)
descend state (Just Siblings{..}) = do
let (node0, node1) = siblingNodes
(_, bound) <- getBounds node0
tree0 <- readArray node0 siblingIndex
tree1 <- readArray node1 siblingIndex
if siblingIndex < bound
then let siblings' = Siblings { siblingNodes = (node0, node1),
siblingIndex = siblingIndex + 1 }
in ascend state tree0 tree1 (Just siblings')
else ascend state tree0 tree1 Nothing
testNodes :: (Node a, Node a) -> [Frame a] -> NodeComparison
testNodes _ [] = NotEqualNodes
testNodes nodes (frame : rest) =
case equalNodes nodes (frameNodes frame) of
NotEqualNodes -> testNodes nodes rest
HalfEqualNodes -> HalfEqualNodes
EqualNodes -> EqualNodes
equalNodes :: (Node a, Node a) -> (Node a, Node a) -> NodeComparison
equalNodes (node0, node1) (node2, node3) =
if node0 == node2
then if node1 == node3
then EqualNodes
else HalfEqualNodes
else if node1 == node3
then HalfEqualNodes
else NotEqualNodes
Вот код тестовой программы. Обратите внимание, что иногда это может не сработать в тесте "Не равно", поскольку он предназначен для генерации наборов узлов со значительной степенью общности, как maxCommonPortion
,
{-# LANGUAGE TupleSections #-}
module Main where
import Data.Array (Array,
listArray,
bounds,
(!))
import Data.Array.IO (IOArray)
import Data.Array.MArray (writeArray,
newArray_)
import Control.Monad (forM_,
mapM,
mapM_,
liftM,
foldM)
import Control.Exception (SomeException,
catch)
import System.Random (StdGen,
newStdGen,
random,
randomR,
split)
import Prelude hiding (catch)
import EqualTree (Tree(..),
equal)
import NaiveEqualTree (naiveEqual)
leafChance :: Double
leafChance = 0.5
valueCount :: Int
valueCount = 1
maxNodeCount :: Int
maxNodeCount = 1024
commonPortionRange :: (Double, Double)
commonPortionRange = (0.8, 0.9)
commonRootChance :: Double
commonRootChance = 0.5
nodeSizeRange :: (Int, Int)
nodeSizeRange = (2, 5)
testCount :: Int
testCount = 1000
makeMapping :: Int -> (Int, Int) -> Int -> StdGen ->
([Either Int Int], StdGen)
makeMapping values range nodes gen =
let (count, gen') = randomR range gen
in makeMapping' 0 [] count gen'
where makeMapping' index mapping count gen
| index >= count = (mapping, gen)
| otherwise =
let (chance, gen0) = random gen
(slot, gen2) =
if chance <= leafChance
then let (value, gen1) = randomR (0, values - 1) gen0
in (Left value, gen1)
else let (nodeIndex, gen1) = randomR (0, nodes - 1) gen0
in (Right nodeIndex, gen1)
in makeMapping' (index + 1) (slot : mapping) count gen2
makeMappings :: Int -> Int -> (Int, Int) -> StdGen ->
([[Either Int Int]], StdGen)
makeMappings size values range gen =
let (size', gen') = randomR (1, size) gen
in makeMappings' 0 size' [] gen'
where makeMappings' index size mappings gen
| index >= size = (mappings, gen)
| otherwise =
let (mapping, gen') = makeMapping values range size gen
in makeMappings' (index + 1) size (mapping : mappings) gen'
makeMappingsPair :: Int -> (Double, Double) -> Int -> (Int, Int) -> StdGen ->
([[Either Int Int]], [[Either Int Int]], StdGen)
makeMappingsPair size commonPortionRange values range gen =
let (size', gen0) = randomR (2, size) gen
(commonPortion, gen1) = randomR commonPortionRange gen0
size0 = 1 + (floor $ fromIntegral size' * commonPortion)
size1 = size' - size0
(mappings, gen2) = makeMappingsPair' 0 size0 size' [] gen1
(mappings0, gen3) = makeMappingsPair' 0 size1 size' [] gen2
(mappings1, gen4) = makeMappingsPair' 0 size1 size' [] gen3
(commonRootValue, gen5) = random gen4
in if commonRootValue < commonRootChance
then (mappings ++ mappings0, mappings ++ mappings1, gen5)
else (mappings0 ++ mappings, mappings1 ++ mappings, gen5)
where makeMappingsPair' index size size' mappings gen
| index >= size = (mappings, gen)
| otherwise =
let (mapping, gen') = makeMapping values range size' gen
in makeMappingsPair' (index + 1) size size' (mapping : mappings)
gen'
populateNode :: IOArray Int (Tree a) -> Array Int (IOArray Int (Tree a)) ->
[Either a Int] -> IO ()
populateNode node nodes mapping =
mapM_ (uncurry populateSlot) (zip [0..] mapping)
where populateSlot index (Left value) =
writeArray node index $ Value value
populateSlot index (Right nodeIndex) =
writeArray node index . Node $ nodes ! nodeIndex
makeTree :: [[Either a Int]] -> IO (Tree a)
makeTree mappings = do
let size = length mappings
nodes <- liftM (listArray (0, size - 1)) $ mapM makeNode mappings
mapM_ (\(index, mapping) -> populateNode (nodes ! index) nodes mapping)
(zip [0..] mappings)
return . Node $ nodes ! 0
where makeNode mapping = newArray_ (0, length mapping - 1)
testEqual :: StdGen -> IO (Bool, StdGen)
testEqual gen = do
let (mappings, gen0) =
makeMappings maxNodeCount valueCount nodeSizeRange gen
tree0 <- makeTree mappings
tree1 <- makeTree mappings
catch (liftM (, gen0) $ equal tree0 tree1) $ \e -> do
putStrLn $ show (e :: SomeException)
return (False, gen0)
testNotEqual :: StdGen -> IO (Bool, Bool, StdGen)
testNotEqual gen = do
let (mappings0, mappings1, gen0) =
makeMappingsPair maxNodeCount commonPortionRange valueCount
nodeSizeRange gen
tree0 <- makeTree mappings0
tree1 <- makeTree mappings1
test <- naiveEqual tree0 tree1
if not test
then
catch (testNotEqual' tree0 tree1 mappings0 mappings1 gen0) $ \e -> do
putStrLn $ show (e :: SomeException)
return (False, False, gen0)
else return (True, True, gen0)
where testNotEqual' tree0 tree1 mappings0 mappings1 gen0 = do
test <- equal tree0 tree1
if test
then do
putStrLn "Match failure: "
putStrLn "Mappings 0: "
mapM (putStrLn . show) $ zip [0..] mappings0
putStrLn "Mappings 1: "
mapM (putStrLn . show) $ zip [0..] mappings1
return (False, False, gen0)
else return (True, False, gen0)
doTestEqual :: (StdGen, Int) -> Int -> IO (StdGen, Int)
doTestEqual (gen, successCount) _ = do
(success, gen') <- testEqual gen
return (gen', successCount + (if success then 1 else 0))
doTestNotEqual :: (StdGen, Int, Int) -> Int -> IO (StdGen, Int, Int)
doTestNotEqual (gen, successCount, excludeCount) _ = do
(success, exclude, gen') <- testNotEqual gen
return (gen', successCount + (if success then 1 else 0),
excludeCount + (if exclude then 1 else 0))
main :: IO ()
main = do
gen <- newStdGen
(gen0, equalSuccessCount) <- foldM doTestEqual (gen, 0) [1..testCount]
putStrLn $ show equalSuccessCount ++ " out of " ++ show testCount ++
" tests for equality passed"
(_, notEqualSuccessCount, excludeCount) <-
foldM doTestNotEqual (gen0, 0, 0) [1..testCount]
putStrLn $ show notEqualSuccessCount ++ " out of " ++ show testCount ++
" tests for inequality passed (with " ++ show excludeCount ++ " excluded)"
1 ответ
Оказывается, проблема была в ошибке, из-за которой "развернутый" список не обновлялся должным образом, вероятно, в сочетании с живыми переменными, содержащимися в цепочках thunks, которые не обязательно были принудительными (хотя это было, когда я делал первый исправить, что проблема ушла, поэтому отсутствие строгости, возможно, не было причиной самой большой проблемы).
Код в исходном сообщении был обновлен, чтобы отразить исправления, внесенные в него.