Как решить следующие повторения и найти привязку к тэте
- T (n) = T (n-1) + n ^ c
- T (n) = T (n-1) + c ^ n
где с постоянная
1 ответ
Решение
Если вы развернете рекурсию, для первого случая вы получите:
1^c + 2^c + ... + (n-1)^c + n^c
которая является формулой Фолхабера. Он говорит вам, что сложность O(n^(c+1))
Второй:
c^1 + c^2 + ... + c^(n-1) + c^n
которая является суммой геометрических и O(c^n)