Как интегрировать Ganglia для Spark 2.1 Метрики заданий, Spark игнорируя метрики Ganglia
Я пытаюсь интегрировать показатели работы Spark 2.1 в Ganglia.
Мой spark-default.conf выглядит так
*.sink.ganglia.class org.apache.spark.metrics.sink.GangliaSink
*.sink.ganglia.name Name
*.sink.ganglia.host $MASTERIP
*.sink.ganglia.port $PORT
*.sink.ganglia.mode unicast
*.sink.ganglia.period 10
*.sink.ganglia.unit seconds
Когда я отправляю свою работу, я вижу предупреждение
Warning: Ignoring non-spark config property: *.sink.ganglia.host=host
Warning: Ignoring non-spark config property: *.sink.ganglia.name=Name
Warning: Ignoring non-spark config property: *.sink.ganglia.mode=unicast
Warning: Ignoring non-spark config property: *.sink.ganglia.class=org.apache.spark.metrics.sink.GangliaSink
Warning: Ignoring non-spark config property: *.sink.ganglia.period=10
Warning: Ignoring non-spark config property: *.sink.ganglia.port=8649
Warning: Ignoring non-spark config property: *.sink.ganglia.unit=seconds
Детали моей среды
Hadoop : Amazon 2.7.3 - emr-5.7.0
Spark : Spark 2.1.1,
Ganglia: 3.7.2
Если у вас есть какие-либо предложения или любая другая альтернатива Ganglia, пожалуйста, ответьте.
4 ответа
Для EMR, в частности, вам нужно поместить эти настройки в /etc/spark/conf/metrics.properties
на главном узле.
Spark on EMR включает библиотеку Ganglia:
$ ls -l /usr/lib/spark/external/lib/spark-ganglia-lgpl_*
-rw-r--r-- 1 root root 28376 Mar 22 00:43 /usr/lib/spark/external/lib/spark-ganglia-lgpl_2.11-2.3.0.jar
Кроме того, в вашем примере отсутствует знак равенства (=
) между именами и значениями конфигурации - не уверены, что это проблема. Ниже приведен пример конфигурации, которая успешно сработала для меня.
*.sink.ganglia.class=org.apache.spark.metrics.sink.GangliaSink
*.sink.ganglia.name=AMZN-EMR
*.sink.ganglia.host=$MASTERIP
*.sink.ganglia.port=8649
*.sink.ganglia.mode=unicast
*.sink.ganglia.period=10
*.sink.ganglia.unit=seconds
В соответствии с искровыми документами
Система метрик настраивается с помощью файла конфигурации, который Spark ожидает присутствовать в $SPARK_HOME/conf/metrics.properties. Пользовательское местоположение файла может быть указано через свойство конфигурации spark.metrics.conf.
поэтому вместо того, чтобы эти конф spark-default.conf
переместить их в $SPARK_HOME/conf/metrics.properties
Не знаю, нужно ли это еще кому-нибудь. Но вам нужно сделать полные конфигурации Ganglia:
# Ganglia conf
*.sink.ganglia.class=org.apache.spark.metrics.sink.GangliaSink
*.sink.ganglia.name=AMZN-EMR
*.sink.ganglia.host=$MASTERIP
*.sink.ganglia.port=8649
*.sink.ganglia.mode=unicast
*.sink.ganglia.period=10
*.sink.ganglia.unit=seconds
# Enable JvmSource for instance master, worker, driver and executor
master.source.jvm.class=org.apache.spark.metrics.source.JvmSource
worker.source.jvm.class=org.apache.spark.metrics.source.JvmSource
driver.source.jvm.class=org.apache.spark.metrics.source.JvmSource
executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource
Даже при полной конфигурации я сталкиваюсь с этой проблемой из AWS EMR 5.33.0
21/05/26 14:18:20 ERROR org.apache.spark.metrics.MetricsSystem: Source class org.apache.spark.metrics.source.JvmSource cannot be instantiated
java.lang.ClassNotFoundException: org.apache.spark.metrics.source.JvmSource
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.util.Utils$.classForName(Utils.scala:239)
at org.apache.spark.metrics.MetricsSystem$$anonfun$registerSources$1.apply(MetricsSystem.scala:184)
at org.apache.spark.metrics.MetricsSystem$$anonfun$registerSources$1.apply(MetricsSystem.scala:181)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:130)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:130)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:236)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap.foreach(HashMap.scala:130)
at org.apache.spark.metrics.MetricsSystem.registerSources(MetricsSystem.scala:181)
at org.apache.spark.metrics.MetricsSystem.start(MetricsSystem.scala:102)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:528)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:238)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
21/05/26 14:18:20 ERROR org.apache.spark.metrics.MetricsSystem: Sink class org.apache.spark.metrics.sink.GangliaSink cannot be instantiated
21/05/26 14:18:20 ERROR org.apache.spark.SparkContext: Error initializing SparkContext.
java.lang.ClassNotFoundException: org.apache.spark.metrics.sink.GangliaSink
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.util.Utils$.classForName(Utils.scala:239)
at org.apache.spark.metrics.MetricsSystem$$anonfun$registerSinks$1.apply(MetricsSystem.scala:200)
at org.apache.spark.metrics.MetricsSystem$$anonfun$registerSinks$1.apply(MetricsSystem.scala:196)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:130)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:130)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:236)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap.foreach(HashMap.scala:130)
at org.apache.spark.metrics.MetricsSystem.registerSinks(MetricsSystem.scala:196)
at org.apache.spark.metrics.MetricsSystem.start(MetricsSystem.scala:104)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:528)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:238)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Это странно, потому что AWS EMR должен обеспечивать эту зависимость (
org.apache.spark:spark-core_2.11:2.4.7
), и я надеюсь, что дистрибутив Spark с AWS EMR скомпилирован с опцией Ganglia. Принуждение этого jar-файла к параметрам --packages или --jars spark тоже не помогает.
Если кому-то удастся заставить Ganglia работать со Spark на AWS EMR с мониторингом jvm драйверов / исполнителей. Скажите, пожалуйста, как?
С этой страницы: https://spark.apache.org/docs/latest/monitoring.html
Spark also supports a Ganglia sink which is not included in the default build due to licensing restrictions:
GangliaSink: Sends metrics to a Ganglia node or multicast group.
**To install the GangliaSink you’ll need to perform a custom build of Spark**. Note that by embedding this library you will include LGPL-licensed code in your Spark package. For sbt users, set the SPARK_GANGLIA_LGPL environment variable before building. For Maven users, enable the -Pspark-ganglia-lgpl profile. In addition to modifying the cluster’s Spark build user