От DatetimeIndex к списку раз

Моя цель состоит в том, чтобы иметь списки времени (в секундах), уже упакованные в списки раз в 5 минут за целый день. Вот мой код для упаковки всего дня "2016-07-08" по 5 минут:

pd.date_range('2016-07-08 00:00:00', '2016-07-08 23:59:00', freq='5Min')

Результат:

DatetimeIndex(['2016-07-08 00:00:00', '2016-07-08 00:05:00',
           '2016-07-08 00:10:00', '2016-07-08 00:15:00',
           '2016-07-08 00:20:00', '2016-07-08 00:25:00',
           '2016-07-08 00:30:00', '2016-07-08 00:35:00',
           '2016-07-08 00:40:00', '2016-07-08 00:45:00',
           ...
           '2016-07-08 23:10:00', '2016-07-08 23:15:00',
           '2016-07-08 23:20:00', '2016-07-08 23:25:00',
           '2016-07-08 23:30:00', '2016-07-08 23:35:00',
           '2016-07-08 23:40:00', '2016-07-08 23:45:00',
           '2016-07-08 23:50:00', '2016-07-08 23:55:00'],
          dtype='datetime64[ns]', length=288, freq='5T')

И это код, который должен включать все времена (по секундам) каждые 5 минут:

for time in pd.date_range('2016-07-08 00:00:00', '2016-07-08 23:59:00', freq='5Min').tolist():    
    time_by_5_min = datetime.datetime.strftime(time.to_datetime(), "%Y-%m-%d %H:%M:%S")
    print pd.date_range(time_by_5_min, freq='S', periods=60)

Результат:

DatetimeIndex(['2016-07-08 00:00:00', '2016-07-08 00:00:01',
           '2016-07-08 00:00:02', '2016-07-08 00:00:03',
           '2016-07-08 00:00:04', '2016-07-08 00:00:05',
           '2016-07-08 00:00:06', '2016-07-08 00:00:07',
           '2016-07-08 00:00:08', '2016-07-08 00:00:09',
           '2016-07-08 00:00:10', '2016-07-08 00:00:11',
           '2016-07-08 00:00:12', '2016-07-08 00:00:13',
           '2016-07-08 00:00:14', '2016-07-08 00:00:15',
           '2016-07-08 00:00:16', '2016-07-08 00:00:17',
           '2016-07-08 00:00:18', '2016-07-08 00:00:19',
           '2016-07-08 00:00:20', '2016-07-08 00:00:21',
           '2016-07-08 00:00:22', '2016-07-08 00:00:23',
           '2016-07-08 00:00:24', '2016-07-08 00:00:25',
           '2016-07-08 00:00:26', '2016-07-08 00:00:27',
           '2016-07-08 00:00:28', '2016-07-08 00:00:29',
           '2016-07-08 00:00:30', '2016-07-08 00:00:31',
           '2016-07-08 00:00:32', '2016-07-08 00:00:33',
           '2016-07-08 00:00:34', '2016-07-08 00:00:35',
           '2016-07-08 00:00:36', '2016-07-08 00:00:37',
           '2016-07-08 00:00:38', '2016-07-08 00:00:39',
           '2016-07-08 00:00:40', '2016-07-08 00:00:41',
           '2016-07-08 00:00:42', '2016-07-08 00:00:43',
           '2016-07-08 00:00:44', '2016-07-08 00:00:45',
           '2016-07-08 00:00:46', '2016-07-08 00:00:47',
           '2016-07-08 00:00:48', '2016-07-08 00:00:49',
           '2016-07-08 00:00:50', '2016-07-08 00:00:51',
           '2016-07-08 00:00:52', '2016-07-08 00:00:53',
           '2016-07-08 00:00:54', '2016-07-08 00:00:55',
           '2016-07-08 00:00:56', '2016-07-08 00:00:57',
           '2016-07-08 00:00:58', '2016-07-08 00:00:59'],
          dtype='datetime64[ns]', freq='S')
DatetimeIndex(['2016-07-08 00:05:00', '2016-07-08 00:05:01',
           '2016-07-08 00:05:02', '2016-07-08 00:05:03',
           '2016-07-08 00:05:04', '2016-07-08 00:05:05',
           '2016-07-08 00:05:06', '2016-07-08 00:05:07',
           '2016-07-08 00:05:08', '2016-07-08 00:05:09',
           '2016-07-08 00:05:10', '2016-07-08 00:05:11',
           '2016-07-08 00:05:12', '2016-07-08 00:05:13',
           '2016-07-08 00:05:14', '2016-07-08 00:05:15',
           '2016-07-08 00:05:16', '2016-07-08 00:05:17',
           '2016-07-08 00:05:18', '2016-07-08 00:05:19',
           '2016-07-08 00:05:20', '2016-07-08 00:05:21',
           '2016-07-08 00:05:22', '2016-07-08 00:05:23',
           '2016-07-08 00:05:24', '2016-07-08 00:05:25',
           '2016-07-08 00:05:26', '2016-07-08 00:05:27',
           '2016-07-08 00:05:28', '2016-07-08 00:05:29',
           '2016-07-08 00:05:30', '2016-07-08 00:05:31',
           '2016-07-08 00:05:32', '2016-07-08 00:05:33',
           '2016-07-08 00:05:34', '2016-07-08 00:05:35',
           '2016-07-08 00:05:36', '2016-07-08 00:05:37',
           '2016-07-08 00:05:38', '2016-07-08 00:05:39',
           '2016-07-08 00:05:40', '2016-07-08 00:05:41',
           '2016-07-08 00:05:42', '2016-07-08 00:05:43',
           '2016-07-08 00:05:44', '2016-07-08 00:05:45',
           '2016-07-08 00:05:46', '2016-07-08 00:05:47',
           '2016-07-08 00:05:48', '2016-07-08 00:05:49',
           '2016-07-08 00:05:50', '2016-07-08 00:05:51',
           '2016-07-08 00:05:52', '2016-07-08 00:05:53',
           '2016-07-08 00:05:54', '2016-07-08 00:05:55',
           '2016-07-08 00:05:56', '2016-07-08 00:05:57',
           '2016-07-08 00:05:58', '2016-07-08 00:05:59'],
          dtype='datetime64[ns]', freq='S')
etc

Это идеально подходит для меня! Теперь я хочу иметь списки, а не pandas.tseries.index.DatetimeIndex. Метод.tolist() дает следующее:

for time in pd.date_range('2016-07-08 00:00:00', '2016-07-08 23:59:00', freq='5Min').tolist():    
    time_by_5_min = datetime.datetime.strftime(time.to_datetime(), "%Y-%m-%d %H:%M:%S")
    print (pd.date_range(time_by_5_min, freq='S', periods=60)).tolist()

Результат:

[Timestamp('2016-07-08 00:00:00', offset='S'), Timestamp('2016-07-08 00:00:01', offset='S'), Timestamp('2016-07-08 00:00:02', offset='S'), Timestamp('2016-07-08 00:00:03', offset='S'), Timestamp('2016-07-08 00:00:04', offset='S'), Timestamp('2016-07-08 00:00:05', offset='S'), Timestamp('2016-07-08 00:00:06', offset='S'), etc]

Я хочу иметь что-то вроде этого:

           [['2016-07-08 00:00:00', '2016-07-08 00:00:01',
           '2016-07-08 00:00:02', '2016-07-08 00:00:03',
           '2016-07-08 00:00:04', '2016-07-08 00:00:05',
           '2016-07-08 00:00:06', '2016-07-08 00:00:07',
           '2016-07-08 00:00:08', '2016-07-08 00:00:09',
           '2016-07-08 00:00:10', '2016-07-08 00:00:11',
           '2016-07-08 00:00:12', '2016-07-08 00:00:13',
           '2016-07-08 00:00:14', '2016-07-08 00:00:15',
           '2016-07-08 00:00:16', '2016-07-08 00:00:17',
           '2016-07-08 00:00:18', '2016-07-08 00:00:19',
           '2016-07-08 00:00:20', '2016-07-08 00:00:21',
           '2016-07-08 00:00:22', '2016-07-08 00:00:23',
           '2016-07-08 00:00:24', '2016-07-08 00:00:25',
           '2016-07-08 00:00:26', '2016-07-08 00:00:27',
           '2016-07-08 00:00:28', '2016-07-08 00:00:29',
           '2016-07-08 00:00:30', '2016-07-08 00:00:31',
           '2016-07-08 00:00:32', '2016-07-08 00:00:33',
           '2016-07-08 00:00:34', '2016-07-08 00:00:35',
           '2016-07-08 00:00:36', '2016-07-08 00:00:37',
           '2016-07-08 00:00:38', '2016-07-08 00:00:39',
           '2016-07-08 00:00:40', '2016-07-08 00:00:41',
           '2016-07-08 00:00:42', '2016-07-08 00:00:43',
           '2016-07-08 00:00:44', '2016-07-08 00:00:45',
           '2016-07-08 00:00:46', '2016-07-08 00:00:47',
           '2016-07-08 00:00:48', '2016-07-08 00:00:49',
           '2016-07-08 00:00:50', '2016-07-08 00:00:51',
           '2016-07-08 00:00:52', '2016-07-08 00:00:53',
           '2016-07-08 00:00:54', '2016-07-08 00:00:55',
           '2016-07-08 00:00:56', '2016-07-08 00:00:57',
           '2016-07-08 00:00:58', '2016-07-08 00:00:59'],

           ['2016-07-08 00:05:00', '2016-07-08 00:05:01',
           '2016-07-08 00:05:02', '2016-07-08 00:05:03',
           '2016-07-08 00:05:04', '2016-07-08 00:05:05',
           '2016-07-08 00:05:06', '2016-07-08 00:05:07',
           '2016-07-08 00:05:08', '2016-07-08 00:05:09',
           '2016-07-08 00:05:10', '2016-07-08 00:05:11',
           '2016-07-08 00:05:12', '2016-07-08 00:05:13',
           '2016-07-08 00:05:14', '2016-07-08 00:05:15',
           '2016-07-08 00:05:16', '2016-07-08 00:05:17',
           '2016-07-08 00:05:18', '2016-07-08 00:05:19',
           '2016-07-08 00:05:20', '2016-07-08 00:05:21',
           '2016-07-08 00:05:22', '2016-07-08 00:05:23',
           '2016-07-08 00:05:24', '2016-07-08 00:05:25',
           '2016-07-08 00:05:26', '2016-07-08 00:05:27',
           '2016-07-08 00:05:28', '2016-07-08 00:05:29',
           '2016-07-08 00:05:30', '2016-07-08 00:05:31',
           '2016-07-08 00:05:32', '2016-07-08 00:05:33',
           '2016-07-08 00:05:34', '2016-07-08 00:05:35',
           '2016-07-08 00:05:36', '2016-07-08 00:05:37',
           '2016-07-08 00:05:38', '2016-07-08 00:05:39',
           '2016-07-08 00:05:40', '2016-07-08 00:05:41',
           '2016-07-08 00:05:42', '2016-07-08 00:05:43',
           '2016-07-08 00:05:44', '2016-07-08 00:05:45',
           '2016-07-08 00:05:46', '2016-07-08 00:05:47',
           '2016-07-08 00:05:48', '2016-07-08 00:05:49',
           '2016-07-08 00:05:50', '2016-07-08 00:05:51',
           '2016-07-08 00:05:52', '2016-07-08 00:05:53',
           '2016-07-08 00:05:54', '2016-07-08 00:05:55',
           '2016-07-08 00:05:56', '2016-07-08 00:05:57',
           '2016-07-08 00:05:58', '2016-07-08 00:05:59'], etc]

Есть идеи?

4 ответа

Решение

Я думаю, что вы можете использовать DatetimeIndex.strftime:

Я пытаюсь удалить некоторый код (в образце не обязательно, может быть, в реальном коде важно)

for time in pd.date_range('2016-07-08 00:00:00', '2016-07-08 23:59:00', freq='5Min'):    
    print (pd.date_range(time, freq='S', periods=60).strftime("%Y-%m-%d %H:%M:%S").tolist())
['2016-07-08 00:00:00', '2016-07-08 00:00:01', '2016-07-08 00:00:02', '2016-07-08 00:00:03', '2016-07-08 00:00:04', '2016-07-08 00:00:05', '2016-07-08 00:00:06', '2016-07-08 00:00:07', '2016-07-08 00:00:08', '2016-07-08 00:00:09', '2016-07-08 00:00:10', '2016-07-08 00:00:11', '2016-07-08 00:00:12', '2016-07-08 00:00:13', '2016-07-08 00:00:14', '2016-07-08 00:00:15', '2016-07-08 00:00:16', '2016-07-08 00:00:17', '2016-07-08 00:00:18', '2016-07-08 00:00:19', '2016-07-08 00:00:20', '2016-07-08 00:00:21', '2016-07-08 00:00:22', '2016-07-08 00:00:23', '2016-07-08 00:00:24', '2016-07-08 00:00:25', '2016-07-08 00:00:26', '2016-07-08 00:00:27', '2016-07-08 00:00:28', '2016-07-08 00:00:29', '2016-07-08 00:00:30', '2016-07-08 00:00:31', '2016-07-08 00:00:32', '2016-07-08 00:00:33', '2016-07-08 00:00:34', '2016-07-08 00:00:35', '2016-07-08 00:00:36', '2016-07-08 00:00:37', '2016-07-08 00:00:38', '2016-07-08 00:00:39', '2016-07-08 00:00:40', '2016-07-08 00:00:41', '2016-07-08 00:00:42', '2016-07-08 00:00:43', '2016-07-08 00:00:44', '2016-07-08 00:00:45', '2016-07-08 00:00:46', '2016-07-08 00:00:47', '2016-07-08 00:00:48', '2016-07-08 00:00:49', '2016-07-08 00:00:50', '2016-07-08 00:00:51', '2016-07-08 00:00:52', '2016-07-08 00:00:53', '2016-07-08 00:00:54', '2016-07-08 00:00:55', '2016-07-08 00:00:56', '2016-07-08 00:00:57', '2016-07-08 00:00:58', '2016-07-08 00:00:59']
['2016-07-08 00:05:00', '2016-07-08 00:05:01', '2016-07-08 00:05:02', '2016-07-08 00:05:03', '2016-07-08 00:05:04', '2016-07-08 00:05:05', '2016-07-08 00:05:06', '2016-07-08 00:05:07', '2016-07-08 00:05:08', '2016-07-08 00:05:09', '2016-07-08 00:05:10', '2016-07-08 00:05:11', '2016-07-08 00:05:12', '2016-07-08 00:05:13', '2016-07-08 00:05:14', '2016-07-08 00:05:15', '2016-07-08 00:05:16', '2016-07-08 00:05:17', '2016-07-08 00:05:18', '2016-07-08 00:05:19', '2016-07-08 00:05:20', '2016-07-08 00:05:21', '2016-07-08 00:05:22', '2016-07-08 00:05:23', '2016-07-08 00:05:24', '2016-07-08 00:05:25', '2016-07-08 00:05:26', '2016-07-08 00:05:27', '2016-07-08 00:05:28', '2016-07-08 00:05:29', '2016-07-08 00:05:30', '2016-07-08 00:05:31', '2016-07-08 00:05:32', '2016-07-08 00:05:33', '2016-07-08 00:05:34', '2016-07-08 00:05:35', '2016-07-08 00:05:36', '2016-07-08 00:05:37', '2016-07-08 00:05:38', '2016-07-08 00:05:39', '2016-07-08 00:05:40', '2016-07-08 00:05:41', '2016-07-08 00:05:42', '2016-07-08 00:05:43', '2016-07-08 00:05:44', '2016-07-08 00:05:45', '2016-07-08 00:05:46', '2016-07-08 00:05:47', '2016-07-08 00:05:48', '2016-07-08 00:05:49', '2016-07-08 00:05:50', '2016-07-08 00:05:51', '2016-07-08 00:05:52', '2016-07-08 00:05:53', '2016-07-08 00:05:54', '2016-07-08 00:05:55', '2016-07-08 00:05:56', '2016-07-08 00:05:57', '2016-07-08 00:05:58', '2016-07-08 00:05:59']
...
...

Если нужно вывести как вложенный listsappend данные в цикле к L:

import pandas as pd

L = []
for time in pd.date_range('2016-07-08 00:00:00', '2016-07-08 23:59:00', freq='5Min'):    
    print (pd.date_range(time, freq='S', periods=60).strftime("%Y-%m-%d %H:%M:%S").tolist())
    L.append(pd.date_range(time, freq='S', periods=60).strftime("%Y-%m-%d %H:%M:%S").tolist())

print (L)

[['2016-07-08 00:00:00', '2016-07-08 00:00:01', '2016-07-08 00:00:02', '2016-07-08 00:00:03', '2016-07-08 00:00:04', '2016-07-08 00:00:05', '2016-07-08 00:00:06', '2016-07-08 00:00:07', '2016-07-08 00:00:08', '2016-07-08 00:00:09', '2016-07-08 00:00:10', '2016-07-08 00:00:11', '2016-07-08 00:00:12', '2016-07-08 00:00:13', '2016-07-08 00:00:14', '2016-07-08 00:00:15', '2016-07-08 00:00:16', '2016-07-08 00:00:17', '2016-07-08 00:00:18', '2016-07-08 00:00:19', '2016-07-08 00:00:20', '2016-07-08 00:00:21', '2016-07-08 00:00:22', '2016-07-08 00:00:23', '2016-07-08 00:00:24', '2016-07-08 00:00:25', '2016-07-08 00:00:26', '2016-07-08 00:00:27', '2016-07-08 00:00:28', '2016-07-08 00:00:29', '2016-07-08 00:00:30', '2016-07-08 00:00:31', '2016-07-08 00:00:32', '2016-07-08 00:00:33', '2016-07-08 00:00:34', '2016-07-08 00:00:35', '2016-07-08 00:00:36', '2016-07-08 00:00:37', '2016-07-08 00:00:38', '2016-07-08 00:00:39', '2016-07-08 00:00:40', '2016-07-08 00:00:41', '2016-07-08 00:00:42', '2016-07-08 00:00:43', '2016-07-08 00:00:44', '2016-07-08 00:00:45', '2016-07-08 00:00:46', '2016-07-08 00:00:47', '2016-07-08 00:00:48', '2016-07-08 00:00:49', '2016-07-08 00:00:50', '2016-07-08 00:00:51', '2016-07-08 00:00:52', '2016-07-08 00:00:53', '2016-07-08 00:00:54', '2016-07-08 00:00:55', '2016-07-08 00:00:56', '2016-07-08 00:00:57', '2016-07-08 00:00:58', '2016-07-08 00:00:59'], ['2016-07-08 00:05:00', '2016-07-08 00:05:01', '2016-07-08 00:05:02', '2016-07-08 00:05:03', '2016-07-08 00:05:04', '2016-07-08 00:05:05', '2016-07-08 00:05:06', '2016-07-08 00:05:07', '2016-07-08 00:05:08', '2016-07-08 00:05:09', '2016-07-08 00:05:10', '2016-07-08 00:05:11', '2016-07-08 00:05:12', '2016-07-08 00:05:13', '2016-07-08 00:05:14', '2016-07-08 00:05:15', '2016-07-08 00:05:16', '2016-07-08 00:05:17', '2016-07-08 00:05:18', '2016-07-08 00:05:19', '2016-07-08 00:05:20', '2016-07-08 00:05:21', '2016-07-08 00:05:22', '2016-07-08 00:05:23', '2016-07-08 00:05:24', '2016-07-08 00:05:25', '2016-07-08 00:05:26', '2016-07-08 00:05:27', '2016-07-08 00:05:28', '2016-07-08 00:05:29', '2016-07-08 00:05:30', '2016-07-08 00:05:31', '2016-07-08 00:05:32', '2016-07-08 00:05:33', '2016-07-08 00:05:34', '2016-07-08 00:05:35', '2016-07-08 00:05:36', '2016-07-08 00:05:37', '2016-07-08 00:05:38', '2016-07-08 00:05:39', '2016-07-08 00:05:40', '2016-07-08 00:05:41', '2016-07-08 00:05:42', '2016-07-08 00:05:43', '2016-07-08 00:05:44', '2016-07-08 00:05:45', '2016-07-08 00:05:46', '2016-07-08 00:05:47', '2016-07-08...

five_minute_data = five_minute_date_range.strftime("%Y-%m-%d %H:%M:%S").tolist() возвращает данные так, как того требовал OP.

Просто используйте строку ниже, чтобы преобразовать DateTimeIndex в список:

      pd.date_range('1/1/2022', periods = 365, freq ='d').strftime("%Y-%m-%d").tolist()

Если вы используете Pandas, я думаю, что возвращаемое значение в качестве фрейма данных поможет в дальнейшей обработке.

  1. Первый создает фрейм данных, содержащий время с 5-минутным интервалом. Затем создает вложенный список для каждого из них с интервалом в 1 секунду.

    df = pd.date_range('2016-07-08 00:00:00', '2016-07-08 00:15:00', freq='5Min').to_frame()
    df = [pd.date_range(time, freq='S', periods=10).to_pydatetime for time in df[0]]
    
  2. Аналогичный, возвращающий ndarray вместо фрейма данных. Также один вкладыш с пониманием списка.

    arr = [pd.date_range(five_minute, freq='S', periods=60).to_pydatetime
           for five_minute in pd.date_range('2016-07-08 00:00:00', '2016-07-08 00:15:00', freq='5Min')]
    
Другие вопросы по тегам