Создавайте новые переменные с помощью mutate_at, сохраняя исходные
Рассмотрим этот простой пример:
library(dplyr)
dataframe <- data_frame(helloo = c(1,2,3,4,5,6),
ooooHH = c(1,1,1,2,2,2),
ahaaa = c(200,400,120,300,100,100))
# A tibble: 6 x 3
helloo ooooHH ahaaa
<dbl> <dbl> <dbl>
1 1 1 200
2 2 1 400
3 3 1 120
4 4 2 300
5 5 2 100
6 6 2 100
Здесь я хочу применить функцию ntile
ко всем столбцам, содержащим oo
, но я бы хотел, чтобы эти новые столбцы назывались cat
+ соответствующий столбец.
я знаю, что я могу сделать это
dataframe %>% mutate_at(vars(contains('oo')), .funs = funs(ntile(., 2)))
# A tibble: 6 x 3
helloo ooooHH ahaaa
<int> <int> <dbl>
1 1 1 200
2 1 1 400
3 1 1 120
4 2 2 300
5 2 2 100
6 2 2 100
Но мне нужно это
# A tibble: 8 x 5
helloo ooooHH ahaaa cat_helloo cat_ooooHH
<dbl> <dbl> <dbl> <int> <int>
1 1 1 200 1 1
2 2 1 400 1 1
3 3 1 120 1 1
4 4 2 300 2 2
5 5 2 100 2 2
6 5 2 100 2 2
7 6 2 100 2 2
8 6 2 100 2 2
Есть ли решение, которое НЕ требует хранения промежуточных данных и слияния с исходным фреймом данных?
1 ответ
Решение
Вы можете дать имена функциям в funs
создать новые переменные с именами в виде суффиксов.
dataframe %>% mutate_at(vars(contains('oo')), .funs = funs(cat = ntile(., 2)))
# A tibble: 6 x 5
helloo ooooHH ahaaa helloo_cat ooooHH_cat
<dbl> <dbl> <dbl> <int> <int>
1 1 1 200 1 1
2 2 1 400 1 1
3 3 1 120 1 1
4 4 2 300 2 2
5 5 2 100 2 2
6 6 2 100 2 2
Если вы хотите вместо этого использовать префикс, вы можете использовать rename_at
изменить имена.
dataframe %>%
mutate_at(vars(contains('oo')), .funs = funs(cat = ntile(., 2))) %>%
rename_at( vars( contains( "_cat") ), funs( paste("cat", gsub("_cat", "", .), sep = "_") ) )
# A tibble: 6 x 5
helloo ooooHH ahaaa cat_helloo cat_ooooHH
<dbl> <dbl> <dbl> <int> <int>
1 1 1 200 1 1
2 2 1 400 1 1
3 3 1 120 1 1
4 4 2 300 2 2
5 5 2 100 2 2
6 6 2 100 2 2