Функция Dplyr для вычисления среднего, n, sd и стандартной ошибки

Я постоянно пишу этот кусочек кода, чтобы генерировать стандартные ошибки для групповых средств (которые затем используются для построения доверительных интервалов).

Было бы неплохо написать свою собственную функцию, чтобы сделать это в одной строке кода, хотя. Я прочитал виньетку nse в dplyr по нестандартной оценке, а также этот пост в блоге. Я немного понимаю, но я слишком много нуб, чтобы понять это самостоятельно. Кто-нибудь может помочь? Благодарю.

var1<-sample(c('red', 'green'), size=10, replace=T)
var2<-rnorm(10, mean=5, sd=1)
df<-data.frame(var1, var2)
df %>% 
group_by(var1) %>% 
summarize(avg=mean(var2), n=n(), sd=sd(var2), se=sd/sqrt(n))

1 ответ

Решение

Вы можете использовать функцию enquo чтобы явно назвать переменные в вызове вашей функции:

my_fun <- function(x, cat_var, num_var){
  cat_var <- enquo(cat_var)
  num_var <- enquo(num_var)

  x %>%
    group_by(!!cat_var) %>%
    summarize(avg = mean(!!num_var), n = n(), 
              sd = sd(!!num_var), se = sd/sqrt(n))
}

который дает вам:

> my_fun(df, var1, var2)
# A tibble: 2 x 5
    var1      avg     n        sd        se
  <fctr>    <dbl> <int>     <dbl>     <dbl>
1  green 4.873617     7 0.7515280 0.2840509
2    red 5.337151     3 0.1383129 0.0798550

и это соответствует результату вашего примера:

> df %>% 
+   group_by(var1) %>% 
+   summarize(avg=mean(var2), n=n(), sd=sd(var2), se=sd/sqrt(n))
# A tibble: 2 x 5
    var1      avg     n        sd        se
  <fctr>    <dbl> <int>     <dbl>     <dbl>
1  green 4.873617     7 0.7515280 0.2840509
2    red 5.337151     3 0.1383129 0.0798550

РЕДАКТИРОВАТЬ:

ОП попросил удалить group_by оператор из функции, чтобы добавить возможность group_by более чем одной переменной. Есть два способа обойти это ИМО. Во-первых, вы можете просто удалить group_by оператор и направить сгруппированный фрейм данных в функцию. Этот метод будет выглядеть так:

my_fun <- function(x, num_var){
  num_var <- enquo(num_var)

  x %>%
    summarize(avg = mean(!!num_var), n = n(), 
              sd = sd(!!num_var), se = sd/sqrt(n))
}

df %>%
  group_by(var1) %>%
  my_fun(var2)

Еще один способ сделать это - использовать ... а также quos чтобы позволить функции захватить несколько аргументов для group_by заявление. Это будет выглядеть так:

#first, build the new dataframe
var1<-sample(c('red', 'green'), size=10, replace=T)
var2<-rnorm(10, mean=5, sd=1)
var3 <- sample(c("A", "B"), size = 10, replace = TRUE)
df<-data.frame(var1, var2, var3)

# using the first version `my_fun`, it would look like this
df %>%
  group_by(var1, var3) %>%
  my_fun(var2)

# A tibble: 4 x 6
# Groups:   var1 [?]
    var1   var3      avg     n        sd        se
  <fctr> <fctr>    <dbl> <int>     <dbl>     <dbl>
1  green      A 5.248095     1       NaN       NaN
2  green      B 5.589881     2 0.7252621 0.5128378
3    red      A 5.364265     2 0.5748759 0.4064986
4    red      B 4.908226     5 1.1437186 0.5114865

# Now doing it with a new function `my_fun2`
my_fun2 <- function(x, num_var, ...){
  group_var <- quos(...)
  num_var <- enquo(num_var)

  x %>%
    group_by(!!!group_var) %>%
    summarize(avg = mean(!!num_var), n = n(), 
              sd = sd(!!num_var), se = sd/sqrt(n))
}

df %>%
  my_fun2(var2, var1, var3)

# A tibble: 4 x 6
# Groups:   var1 [?]
    var1   var3      avg     n        sd        se
  <fctr> <fctr>    <dbl> <int>     <dbl>     <dbl>
1  green      A 5.248095     1       NaN       NaN
2  green      B 5.589881     2 0.7252621 0.5128378
3    red      A 5.364265     2 0.5748759 0.4064986
4    red      B 4.908226     5 1.1437186 0.5114865
Другие вопросы по тегам