Строка 880, в load_eof поднять EOFError EOFError при попытке загрузки с помощью укропа
Я довольно плохо знаком с питоном и машинным обучением. Я использовал библиотеку neupy для успешного создания нейронных сетей. Однако теперь, когда у меня есть приличная сеть, я хочу ее сохранить. Документация показывает, как использовать библиотеку укропа, чтобы сделать это. Кажется, что сеть правильно пишет в файл, но не загружает файл, который будет использоваться. Код повторяется, потому что я собираюсь разделять скрипты после правильной реализации кода. Я скопировал код точно так, как указано ( http://neupy.com/docs/storage.html)
Мой код:
import dill
import csv
import numpy as np
from sklearn import datasets, preprocessing
from sklearn.cross_validation import train_test_split
from neupy import algorithms, layers
from neupy.functions import rmsle
np.random.seed(0)
#variables
EPOCHS = 200
HIDDENLAYER = 17
miss = 0.1
hit = 0.2
TRAIN = 0.7
ROUND = 2
STEP = 0.003
TOL = 0.02
with open('binary_conversion_dataset_input_2.csv','r') as dest1_f:
data_iter = csv.reader(dest1_f,
delimiter = ',',
quotechar = '"')
data = [data for data in data_iter]
data_array1 = np.asarray(data, dtype = float)
hitmiss_in = data_array1 #loads entire dataset from excel csv file
with open('binary_conversion_dataset_target_2.csv','r') as dest2_f:
data_iter = csv.reader(dest2_f,
delimiter = ',',
quotechar = '"')
data = [data for data in data_iter]
data_array2 = np.asarray(data, dtype = float)
hitmiss_target = data_array2 #loads entire dataset from excel csv file
hitmiss_input = hitmiss_in[:,:]
hitmiss_target = hitmiss_target[:,:]
hitmiss_predict = [0.53, 0.80, 0.40, 0.20, 0.07]
#####break target set into single numbers
hitmiss_target1a = hitmiss_target[:,0]
hitmiss_target1b = hitmiss_target[:,1]
hitmiss_target1c = hitmiss_target[:,2]
hitmiss_target1d = hitmiss_target[:,3]
hitmiss_target1e = hitmiss_target[:,4]
##hitmiss_target1f = hitmiss_target[:,5]
##hitmiss_target1g = hitmiss_target[:,6]
##hitmiss_target1h = hitmiss_target[:,7]
##hitmiss_target1i = hitmiss_target[:,8]
##hitmiss_target1j = hitmiss_target[:,9]
##hitmiss_target1k = hitmiss_target[:,10]
##hitmiss_target1l = hitmiss_target[:,11]
##hitmiss_target1m = hitmiss_target[:,12]
##hitmiss_target1n = hitmiss_target[:,13]
##hitmiss_target1o = hitmiss_target[:,14]
##hitmiss_target1p = hitmiss_target[:,15]
##hitmiss_target1q = hitmiss_target[:,16]
##hitmiss_target1r = hitmiss_target[:,17]
##hitmiss_target1s = hitmiss_target[:,18]
##hitmiss_target1t = hitmiss_target[:,19]
################################################Neural Network for hit miss
x_train, x_test, y_train, y_test = train_test_split(
hitmiss_input, hitmiss_target1a, train_size=TRAIN
)
cgnet = algorithms.ConjugateGradient(
connection=[
layers.TanhLayer(5),
layers.TanhLayer(HIDDENLAYER),
layers.OutputLayer(1),
],
search_method='golden',
tol = TOL, step = STEP,
show_epoch=25,
optimizations=[algorithms.LinearSearch],
)
cgnet.train(x_train, y_train, x_test, y_test, epochs=EPOCHS)
hitmiss_final_A = cgnet.predict(hitmiss_predict).round(ROUND)
with open('network-storage.dill', 'w') as net:
dill.dumps(net, dill.HIGHEST_PROTOCOL)
#p = pickle.dumps(g, pickle.HIGHEST_PROTOCOL)
print hitmiss_final_A
import dill
import csv
import numpy as np
from sklearn import datasets, preprocessing
from sklearn.cross_validation import train_test_split
from neupy import algorithms, layers
from neupy.functions import rmsle
np.random.seed(0)
#variables
EPOCHS = 2000
HIDDENLAYER = 17
miss = 0.1
hit = 0.2
TRAIN = 0.7
ROUND = 2
STEP = 0.003
TOL = 0.02
with open('binary_conversion_dataset_input_2.csv','r') as dest1_f:
data_iter = csv.reader(dest1_f,
delimiter = ',',
quotechar = '"')
data = [data for data in data_iter]
data_array1 = np.asarray(data, dtype = float)
hitmiss_in = data_array1 #loads entire dataset from excel csv file
with open('binary_conversion_dataset_target_2.csv','r') as dest2_f:
data_iter = csv.reader(dest2_f,
delimiter = ',',
quotechar = '"')
data = [data for data in data_iter]
data_array2 = np.asarray(data, dtype = float)
hitmiss_target = data_array2 #loads entire dataset from excel csv file
hitmiss_input = hitmiss_in[:,:]
hitmiss_target = hitmiss_target[:,:]
hitmiss_predict = [0.53, 0.80, 0.40, 0.20, 0.07]
#####break target set into single numbers
hitmiss_target1a = hitmiss_target[:,0]
hitmiss_target1b = hitmiss_target[:,1]
hitmiss_target1c = hitmiss_target[:,2]
hitmiss_target1d = hitmiss_target[:,3]
hitmiss_target1e = hitmiss_target[:,4]
###Neural Network
x_train, x_test, y_train, y_test = train_test_split(
hitmiss_input, hitmiss_target1a, train_size=TRAIN
)
with open('network-storage.dill', 'r') as f:
cgnet = dill.load(f)
hitmiss_final_A = cgnet.predict(hitmiss_predict).round(ROUND)
print hitmiss_final_A
Произошли ошибки:
Traceback (most recent call last):
File "C:\Python27\save network script.py", line 171, in <module>
cgnet = dill.load(f)
File "C:\Python27\lib\site-packages\dill\dill.py", line 128, in load
obj = pik.load()
File "C:\Python27\lib\pickle.py", line 858, in load
dispatch[key](self)
File "C:\Python27\lib\pickle.py", line 880, in load_eof
raise EOFError
EOFError
Возможно ли, что обозначение переменной, которое я выбрал, вызывает его многократное зацикливание, вызывая проблемы? Или много чего можно хранить?
1 ответ
Ваша линия сброса должна быть как
dill.dump(obj, file)
Или же
file.write(dill.dumps(...))
dumps
возвращает строку и не записывает в файл самостоятельно. Он остался пустым, и при чтении вы сразу получили ошибку EOF (конец файла).