CMUSphinx word_align.pl Ошибка 65280 при обучении новому языку

Во время обучения моему языку я получаю эту ошибку. Я не использую свойство force_align. Исполняемые файлы Sphinx_fe и pocketsphinx_batch находятся в пути. В файле журнала декодирования не указана ошибка. Я проследил учебный документ и прочитал все темы об этой ошибке, но мне не повезло. Вот мой журнал фазы декодирования и файлы конфигурации: Заранее спасибо.



    # Configuration script for sphinx trainer                  -*-mode:Perl-*-

    $CFG_VERBOSE = 1;       # Determines how much goes to the screen.

    # These are filled in at configuration time
    $CFG_DB_NAME = "tur";
    # Experiment name, will be used to name model files and log files
    $CFG_EXPTNAME = "$CFG_DB_NAME";

    # Directory containing SphinxTrain binaries
    $CFG_BASE_DIR = "C:/sphinx/tur";
    $CFG_SPHINXTRAIN_DIR = "C:/sphinx/sphinxtrain";
    $CFG_BIN_DIR = "C:/sphinx/sphinxtrain/bin/Release/x64";
    $CFG_SCRIPT_DIR = "C:/sphinx/sphinxtrain/scripts";


    # Audio waveform and feature file information
    $CFG_WAVFILES_DIR = "$CFG_BASE_DIR/wav";
    $CFG_WAVFILE_EXTENSION = 'wav';
    $CFG_WAVFILE_TYPE = 'mswav'; # one of nist, mswav, raw
    $CFG_FEATFILES_DIR = "$CFG_BASE_DIR/feat";
    $CFG_FEATFILE_EXTENSION = 'mfc';

    # Feature extraction parameters
    $CFG_WAVFILE_SRATE = 16000.0;
    $CFG_NUM_FILT = 25; # For wideband speech it's 25, for telephone 8khz reasonable value is 15
    $CFG_LO_FILT = 130; # For telephone 8kHz speech value is 200
    $CFG_HI_FILT = 6800; # For telephone 8kHz speech value is 3500
    $CFG_TRANSFORM = "dct"; # Previously legacy transform is used, but dct is more accurate
    $CFG_LIFTER = "22"; # Cepstrum lifter is smoothing to improve recognition
    $CFG_VECTOR_LENGTH = 13; # 13 is usually enough

    $CFG_MIN_ITERATIONS = 1;  # BW Iterate at least this many times
    $CFG_MAX_ITERATIONS = 10; # BW Don't iterate more than this, somethings likely wrong.

    # (none/max) Type of AGC to apply to input files
    $CFG_AGC = 'none';
    # (current/none) Type of cepstral mean subtraction/normalization
    # to apply to input files
    $CFG_CMN = 'batch';
    # (yes/no) Normalize variance of input files to 1.0
    $CFG_VARNORM = 'no';
    # (yes/no) Train full covariance matrices
    $CFG_FULLVAR = 'no';
    # (yes/no) Use diagonals only of full covariance matrices for
    # Forward-Backward evaluation (recommended if CFG_FULLVAR is yes)
    $CFG_DIAGFULL = 'no';

    # (yes/no) Perform vocal tract length normalization in training.  This
    # will result in a "normalized" model which requires VTLN to be done
    # during decoding as well.
    $CFG_VTLN = 'no';
    # Starting warp factor for VTLN
    $CFG_VTLN_START = 0.80;
    # Ending warp factor for VTLN
    $CFG_VTLN_END = 1.40;
    # Step size of warping factors
    $CFG_VTLN_STEP = 0.05;

    # Directory to write queue manager logs to
    $CFG_QMGR_DIR = "$CFG_BASE_DIR/qmanager";
    # Directory to write training logs to
    $CFG_LOG_DIR = "$CFG_BASE_DIR/logdir";
    # Directory for re-estimation counts
    $CFG_BWACCUM_DIR = "$CFG_BASE_DIR/bwaccumdir";
    # Directory to write model parameter files to
    $CFG_MODEL_DIR = "$CFG_BASE_DIR/model_parameters";

    # Directory containing transcripts and control files for
    # speaker-adaptive training
    $CFG_LIST_DIR = "$CFG_BASE_DIR/etc";

    # Decoding variables for MMIE training
    $CFG_LANGUAGEWEIGHT = "11.5";
    $CFG_BEAMWIDTH      = "1e-100";
    $CFG_WORDBEAM       = "1e-80";
    $CFG_LANGUAGEMODEL  = "$CFG_LIST_DIR/$CFG_DB_NAME.lm.DMP";
    $CFG_WORDPENALTY    = "0.2";

    # Lattice pruning variables
    $CFG_ABEAM              = "1e-50";
    $CFG_NBEAM              = "1e-10";
    $CFG_PRUNED_DENLAT_DIR  = "$CFG_BASE_DIR/pruned_denlat";

    # MMIE training related variables
    $CFG_MMIE = "no";
    $CFG_MMIE_MAX_ITERATIONS = 5;
    $CFG_LATTICE_DIR = "$CFG_BASE_DIR/lattice";
    $CFG_MMIE_TYPE   = "rand"; # Valid values are "rand", "best" or "ci"
    $CFG_MMIE_CONSTE = "3.0";
    $CFG_NUMLAT_DIR  = "$CFG_BASE_DIR/numlat";
    $CFG_DENLAT_DIR  = "$CFG_BASE_DIR/denlat";

    # Variables used in main training of models
    $CFG_DICTIONARY     = "$CFG_LIST_DIR/$CFG_DB_NAME.dic";
    $CFG_RAWPHONEFILE   = "$CFG_LIST_DIR/$CFG_DB_NAME.phone";
    $CFG_FILLERDICT     = "$CFG_LIST_DIR/$CFG_DB_NAME.filler";
    $CFG_LISTOFFILES    = "$CFG_LIST_DIR/${CFG_DB_NAME}_train.fileids";
    $CFG_TRANSCRIPTFILE = "$CFG_LIST_DIR/${CFG_DB_NAME}_train.transcription";
    $CFG_FEATPARAMS     = "$CFG_LIST_DIR/feat.params";

    # Variables used in characterizing models

    $CFG_HMM_TYPE = '.cont.'; # Sphinx 4, PocketSphinx
    #$CFG_HMM_TYPE  = '.semi.'; # PocketSphinx
    #$CFG_HMM_TYPE  = '.ptm.'; # PocketSphinx (larger data sets)

    if (($CFG_HMM_TYPE ne ".semi.")
        and ($CFG_HMM_TYPE ne ".ptm.")
        and ($CFG_HMM_TYPE ne ".cont.")) {
      die "Please choose one CFG_HMM_TYPE out of '.cont.', '.ptm.', or '.semi.', " .
        "currently $CFG_HMM_TYPE\n";
    }

    # This configuration is fastest and best for most acoustic models in
    # PocketSphinx and Sphinx-III.  See below for Sphinx-II.
    $CFG_STATESPERHMM = 3;
    $CFG_SKIPSTATE = 'no';

    if ($CFG_HMM_TYPE eq '.semi.') {
      $CFG_DIRLABEL = 'semi';
    # Four stream features for PocketSphinx
      $CFG_FEATURE = "s2_4x";
      $CFG_NUM_STREAMS = 4;
      $CFG_INITIAL_NUM_DENSITIES = 8;
      $CFG_FINAL_NUM_DENSITIES = 8;
      die "For semi continuous models, the initial and final models have the same density" 
        if ($CFG_INITIAL_NUM_DENSITIES != $CFG_FINAL_NUM_DENSITIES);
    } elsif ($CFG_HMM_TYPE eq '.ptm.') {
      $CFG_DIRLABEL = 'ptm';
    # Four stream features for PocketSphinx
      $CFG_FEATURE = "s2_4x";
      $CFG_NUM_STREAMS = 4;
      $CFG_INITIAL_NUM_DENSITIES = 8;
      $CFG_FINAL_NUM_DENSITIES = 8;
      die "For phonetically tied models, the initial and final models have the same density" 
        if ($CFG_INITIAL_NUM_DENSITIES != $CFG_FINAL_NUM_DENSITIES);
    } elsif ($CFG_HMM_TYPE eq '.cont.') {
      $CFG_DIRLABEL = 'cont';
    # Single stream features - Sphinx 3
      $CFG_FEATURE = "1s_c_d_dd";
      $CFG_NUM_STREAMS = 1;
      $CFG_INITIAL_NUM_DENSITIES = 1;
      $CFG_FINAL_NUM_DENSITIES = 8;
      die "The initial has to be less than the final number of densities" 
        if ($CFG_INITIAL_NUM_DENSITIES > $CFG_FINAL_NUM_DENSITIES);
    }

    # Number of top gaussians to score a frame. A little bit less accurate computations
    # make training significantly faster. Uncomment to apply this during the training
    # For good accuracy make sure you are using the same setting in decoder
    # In theory this can be different for various training stages. For example 4 for
    # CI stage and 16 for CD stage
    # $CFG_CI_TOPN = 4;
    # $CFG_CD_TOPN = 16;

    # (yes/no) Train multiple-gaussian context-independent models (useful
    # for alignment, use 'no' otherwise) in the models created
    # specifically for forced alignment
    $CFG_FALIGN_CI_MGAU = 'no';
    # (yes/no) Train multiple-gaussian context-independent models (useful
    # for alignment, use 'no' otherwise)
    $CFG_CI_MGAU = 'no';
    # (yes/no) Train context-dependent models
    $CFG_CD_TRAIN = 'no';
    # Number of tied states (senones) to create in decision-tree clustering
    $CFG_N_TIED_STATES = 200;
    # How many parts to run Forward-Backward estimatinon in
    $CFG_NPART = 1;

    # (yes/no) Train a single decision tree for all phones (actually one
    # per state) (useful for grapheme-based models, use 'no' otherwise)
    $CFG_CROSS_PHONE_TREES = 'no';

    # Use force-aligned transcripts (if available) as input to training
    $CFG_FORCEDALIGN = 'no';

    # Use a specific set of models for force alignment.  If not defined,
    # context-independent models for the current experiment will be used.
    #$CFG_FORCE_ALIGN_MODELDIR = "$CFG_MODEL_DIR/$CFG_EXPTNAME.falign_ci_$CFG_DIRLABEL";

    # Use a specific dictionary and filler dictionary for force alignment.
    # If these are not defined, a dictionary and filler dictionary will be
    # created from $CFG_DICTIONARY and $CFG_FILLERDICT, with noise words
    # removed from the filler dictionary and added to the dictionary (this
    # is because the force alignment is not very good at inserting them)

    # $CFG_FORCE_ALIGN_DICTIONARY = "$ST::CFG_BASE_DIR/falignout$ST::CFG_EXPTNAME.falign.dict";;
    # $CFG_FORCE_ALIGN_FILLERDICT = "$ST::CFG_BASE_DIR/falignout/$ST::CFG_EXPTNAME.falign.fdict";;

    # Use a particular beam width for force alignment.  The wider
    # (i.e. smaller numerically) the beam, the fewer sentences will be
    # rejected for bad alignment.
    $CFG_FORCE_ALIGN_BEAM = 1e-60;

    # Calculate an LDA/MLLT transform?
    $CFG_LDA_MLLT = 'no';
    # Dimensionality of LDA/MLLT output
    $CFG_LDA_DIMENSION = 29;

    # This is actually just a difference in log space (it doesn't make
    # sense otherwise, because different feature parameters have very
    # different likelihoods)
    $CFG_CONVERGENCE_RATIO = 0.1;

    # Queue::POSIX for multiple CPUs on a local machine
    # Queue::PBS to use a PBS/TORQUE queue
    $CFG_QUEUE_TYPE = "Queue";

    # Name of queue to use for PBS/TORQUE
    $CFG_QUEUE_NAME = "workq";

    # (yes/no) Build questions for decision tree clustering automatically
    $CFG_MAKE_QUESTS = "yes";
    # If CFG_MAKE_QUESTS is yes, questions are written to this file.
    # If CFG_MAKE_QUESTS is no, questions are read from this file.
    $CFG_QUESTION_SET = "${CFG_BASE_DIR}/model_architecture/${CFG_EXPTNAME}.tree_questions";
    #$CFG_QUESTION_SET = "${CFG_BASE_DIR}/linguistic_questions";

    $CFG_CP_OPERATION = "${CFG_BASE_DIR}/model_architecture/${CFG_EXPTNAME}.cpmeanvar";

    # Configuration for grapheme-to-phoneme model
    $CFG_G2P_MODEL= 'no';

    # Configuration script for sphinx decoder 

    # Variables starting with $DEC_CFG_ refer to decoder specific
    # arguments, those starting with $CFG_ refer to trainer arguments,
    # some of them also used by the decoder.

    $DEC_CFG_VERBOSE = 1;       # Determines how much goes to the screen.

    # These are filled in at configuration time

    # Name of the decoding script to use (psdecode.pl or s3decode.pl, probably)
    $DEC_CFG_SCRIPT = 'psdecode.pl';

    $DEC_CFG_EXPTNAME = "$CFG_EXPTNAME";
    $DEC_CFG_JOBNAME  = "$CFG_EXPTNAME"."_job";

    # Models to use.
    $DEC_CFG_MODEL_NAME = "$CFG_EXPTNAME.ci_cont";

    $DEC_CFG_FEATFILES_DIR = "$CFG_BASE_DIR/feat";
    $DEC_CFG_FEATFILE_EXTENSION = '.mfc';
    $DEC_CFG_AGC = $CFG_AGC;
    $DEC_CFG_CMN = $CFG_CMN;
    $DEC_CFG_VARNORM = $CFG_VARNORM;

    $DEC_CFG_QMGR_DIR = "$CFG_BASE_DIR/qmanager";
    $DEC_CFG_LOG_DIR = "$CFG_BASE_DIR/logdir";
    $DEC_CFG_MODEL_DIR = "$CFG_MODEL_DIR";

    $DEC_CFG_DICTIONARY     = "$CFG_BASE_DIR/etc/$CFG_DB_NAME.dic";
    $DEC_CFG_FILLERDICT     = "$CFG_BASE_DIR/etc/$CFG_DB_NAME.filler";
    $DEC_CFG_LISTOFFILES    = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}_test.fileids";
    $DEC_CFG_TRANSCRIPTFILE = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}_test.transcription";
    $DEC_CFG_RESULT_DIR     = "$CFG_BASE_DIR/result";
    $DEC_CFG_PRESULT_DIR     = "$CFG_BASE_DIR/presult";

    # This variables, used by the decoder, have to be user defined, and
    # may affect the decoder output


    #$DEC_CFG_LANGUAGEMODEL  = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.lm.DMP";
    # Or can be JSGF or FSG too, used if uncommented
    $DEC_CFG_GRAMMAR  = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.jsgf";
    # $DEC_CFG_FSG  = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.fsg";

    $DEC_CFG_LANGUAGEWEIGHT = "10";
    $DEC_CFG_BEAMWIDTH = "1e-80";
    $DEC_CFG_WORDBEAM = "1e-40";
    $DEC_CFG_WORDPENALTY = "0.2";

    $DEC_CFG_ALIGN = "builtin";

    $DEC_CFG_NPART = 1;     #  Define how many pieces to split decode in

    # This variable has to be defined, otherwise utils.pl will not load.
    $CFG_DONE = 1;

    return 1;



    INFO: pocketsphinx.c(152): Parsed model-specific feature parameters from C:/sphinx/tur/model_parameters/tur.ci_cont/feat.params
    Current configuration:
    [NAME]          [DEFLT]     [VALUE]
    -agc            none        none
    -agcthresh      2.0     2.000000e+00
    -allphone               
    -allphone_ci        yes     yes
    -alpha          0.97        9.700000e-01
    -ascale         20.0        2.000000e+01
    -aw         1       1
    -backtrace      no      no
    -beam           1e-48       1.000000e-80
    -bestpath       yes     yes
    -bestpathlw     9.5     1.000000e+01
    -ceplen         13      13
    -cmn            live        batch
    -cmninit        40,3,-1     40,3,-1
    -compallsen     no      no
    -dict                   C:/sphinx/tur/etc/tur.dic
    -dictcase       no      no
    -dither         no      no
    -doublebw       no      no
    -ds         1       1
    -fdict                  
    -feat           1s_c_d_dd   1s_c_d_dd
    -featparams             
    -fillprob       1e-8        1.000000e-08
    -frate          100     100
    -fsg                    
    -fsgusealtpron      yes     yes
    -fsgusefiller       yes     yes
    -fwdflat        yes     yes
    -fwdflatbeam        1e-64       1.000000e-80
    -fwdflatefwid       4       4
    -fwdflatlw      8.5     1.000000e+01
    -fwdflatsfwin       25      25
    -fwdflatwbeam       7e-29       1.000000e-40
    -fwdtree        yes     yes
    -hmm                    C:/sphinx/tur/model_parameters/tur.ci_cont
    -input_endian       little      little
    -jsgf                   C:/sphinx/tur/etc/tur.jsgf
    -keyphrase              
    -kws                    
    -kws_delay      10      10
    -kws_plp        1e-1        1.000000e-01
    -kws_threshold      1e-30       1.000000e-30
    -latsize        5000        5000
    -lda                    
    -ldadim         0       0
    -lifter         0       22
    -lm                 
    -lmctl                  
    -lmname                 
    -logbase        1.0001      1.000100e+00
    -logfn                  
    -logspec        no      no
    -lowerf         133.33334   1.300000e+02
    -lpbeam         1e-40       1.000000e-80
    -lponlybeam     7e-29       1.000000e-80
    -lw         6.5     1.000000e+01
    -maxhmmpf       30000       30000
    -maxwpf         -1      -1
    -mdef                   
    -mean                   
    -mfclogdir              
    -min_endfr      0       0
    -mixw                   
    -mixwfloor      0.0000001   1.000000e-07
    -mllr                   
    -mmap           yes     yes
    -ncep           13      13
    -nfft           512     512
    -nfilt          40      25
    -nwpen          1.0     1.000000e+00
    -pbeam          1e-48       1.000000e-80
    -pip            1.0     1.000000e+00
    -pl_beam        1e-10       1.000000e-10
    -pl_pbeam       1e-10       1.000000e-10
    -pl_pip         1.0     1.000000e+00
    -pl_weight      3.0     3.000000e+00
    -pl_window      5       5
    -rawlogdir              
    -remove_dc      no      no
    -remove_noise       yes     yes
    -remove_silence     yes     yes
    -round_filters      yes     yes
    -samprate       16000       1.600000e+04
    -seed           -1      -1
    -sendump                
    -senlogdir              
    -senmgau                
    -silprob        0.005       5.000000e-03
    -smoothspec     no      no
    -svspec                 
    -tmat                   
    -tmatfloor      0.0001      1.000000e-04
    -topn           4       4
    -topn_beam      0       0
    -toprule                
    -transform      legacy      dct
    -unit_area      yes     yes
    -upperf         6855.4976   6.800000e+03
    -uw         1.0     1.000000e+00
    -vad_postspeech     50      50
    -vad_prespeech      20      20
    -vad_startspeech    10      10
    -vad_threshold      3.0     3.000000e+00
    -var                    
    -varfloor       0.0001      1.000000e-04
    -varnorm        no      no
    -verbose        no      no
    -warp_params                
    -warp_type      inverse_linear  inverse_linear
    -wbeam          7e-29       1.000000e-40
    -wip            0.65        2.000000e-01
    -wlen           0.025625    2.562500e-02

    INFO: feat.c(715): Initializing feature stream to type: '1s_c_d_dd', ceplen=13, CMN='batch', VARNORM='no', AGC='none'
    INFO: mdef.c(518): Reading model definition: C:/sphinx/tur/model_parameters/tur.ci_cont/mdef
    INFO: bin_mdef.c(181): Allocating 92 * 8 bytes (0 KiB) for CD tree
    INFO: tmat.c(149): Reading HMM transition probability matrices: C:/sphinx/tur/model_parameters/tur.ci_cont/transition_matrices
    INFO: acmod.c(113): Attempting to use PTM computation module
    INFO: ms_gauden.c(127): Reading mixture gaussian parameter: C:/sphinx/tur/model_parameters/tur.ci_cont/means
    INFO: ms_gauden.c(242): 66 codebook, 1 feature, size: 
    INFO: ms_gauden.c(244):  1x39
    INFO: ms_gauden.c(127): Reading mixture gaussian parameter: C:/sphinx/tur/model_parameters/tur.ci_cont/variances
    INFO: ms_gauden.c(242): 66 codebook, 1 feature, size: 
    INFO: ms_gauden.c(244):  1x39
    INFO: ms_gauden.c(304): 0 variance values floored
    INFO: ptm_mgau.c(807): Number of codebooks doesn't match number of ciphones, doesn't look like PTM: 66 != 22
    INFO: acmod.c(115): Attempting to use semi-continuous computation module
    INFO: ms_gauden.c(127): Reading mixture gaussian parameter: C:/sphinx/tur/model_parameters/tur.ci_cont/means
    INFO: ms_gauden.c(242): 66 codebook, 1 feature, size: 
    INFO: ms_gauden.c(244):  1x39
    INFO: ms_gauden.c(127): Reading mixture gaussian parameter: C:/sphinx/tur/model_parameters/tur.ci_cont/variances
    INFO: ms_gauden.c(242): 66 codebook, 1 feature, size: 
    INFO: ms_gauden.c(244):  1x39
    INFO: ms_gauden.c(304): 0 variance values floored
    INFO: acmod.c(117): Falling back to general multi-stream GMM computation
    INFO: ms_gauden.c(127): Reading mixture gaussian parameter: C:/sphinx/tur/model_parameters/tur.ci_cont/means
    INFO: ms_gauden.c(242): 66 codebook, 1 feature, size: 
    INFO: ms_gauden.c(244):  1x39
    INFO: ms_gauden.c(127): Reading mixture gaussian parameter: C:/sphinx/tur/model_parameters/tur.ci_cont/variances
    INFO: ms_gauden.c(242): 66 codebook, 1 feature, size: 
    INFO: ms_gauden.c(244):  1x39
    INFO: ms_gauden.c(304): 0 variance values floored
    INFO: ms_senone.c(149): Reading senone mixture weights: C:/sphinx/tur/model_parameters/tur.ci_cont/mixture_weights
    INFO: ms_senone.c(200): Truncating senone logs3(pdf) values by 10 bits
    INFO: ms_senone.c(207): Not transposing mixture weights in memory
    INFO: ms_senone.c(268): Read mixture weights for 66 senones: 1 features x 1 codewords
    INFO: ms_senone.c(320): Mapping senones to individual codebooks
    INFO: ms_mgau.c(144): The value of topn: 4
    WARN: "ms_mgau.c", line 148: -topn argument (4) invalid or > #density codewords (1); set to latter
    INFO: phone_loop_search.c(114): State beam -225 Phone exit beam -225 Insertion penalty 0
    INFO: dict.c(320): Allocating 4105 * 32 bytes (128 KiB) for word entries
    INFO: dict.c(333): Reading main dictionary: C:/sphinx/tur/etc/tur.dic
    INFO: dict.c(213): Dictionary size 6, allocated 0 KiB for strings, 0 KiB for phones
    INFO: dict.c(336): 6 words read
    INFO: dict.c(358): Reading filler dictionary: C:/sphinx/tur/model_parameters/tur.ci_cont/noisedict
    INFO: dict.c(213): Dictionary size 9, allocated 0 KiB for strings, 0 KiB for phones
    INFO: dict.c(361): 3 words read
    INFO: dict2pid.c(396): Building PID tables for dictionary
    INFO: dict2pid.c(406): Allocating 22^3 * 2 bytes (20 KiB) for word-initial triphones
    INFO: dict2pid.c(132): Allocated 11792 bytes (11 KiB) for word-final triphones
    INFO: dict2pid.c(196): Allocated 11792 bytes (11 KiB) for single-phone word triphones
    INFO: jsgf.c(709): Defined rule: 
    INFO: jsgf.c(709): Defined rule: PUBLIC 
    INFO: fsg_model.c(208): Computing transitive closure for null transitions
    INFO: fsg_model.c(270): 0 null transitions added
    INFO: fsg_search.c(227): FSG(beam: -1799, pbeam: -1799, wbeam: -900; wip: -158, pip: 0)
    INFO: fsg_model.c(423): Adding silence transitions for  to FSG
    INFO: fsg_model.c(443): Added 2 silence word transitions
    INFO: fsg_search.c(173): Added 0 alternate word transitions
    INFO: fsg_lextree.c(110): Allocated 92 bytes (0 KiB) for left and right context phones
    INFO: fsg_lextree.c(256): 37 HMM nodes in lextree (8 leaves)
    INFO: fsg_lextree.c(259): Allocated 5328 bytes (5 KiB) for all lextree nodes
    INFO: fsg_lextree.c(262): Allocated 1152 bytes (1 KiB) for lextree leafnodes
    INFO: batch.c(778): TOTAL 0.00 seconds speech, 0.00 seconds CPU, 0.00 seconds wall
    INFO: batch.c(780): AVERAGE -nan(ind) xRT (CPU), -nan(ind) xRT (elapsed)
    INFO: fsg_search.c(265): TOTAL fsg 0.00 CPU -nan(ind) xRT
    INFO: fsg_search.c(268): TOTAL fsg 0.00 wall -nan(ind) xRT
    Tue Jul 24 11:29:58 2018

0 ответов

Другие вопросы по тегам