numpy/pandas: как преобразовать последовательность строк из нулей и единиц в матрицу
У меня есть данные, которые поступают в этом формате:
[
(1, "000010101001010101011101010101110101", "aaa", ... ),
(0, "111101010100101010101110101010111010", "bb", ... ),
(0, "100010110100010101001010101011101010", "ccc", ... ),
(1, "000010101001010101011101010101110101", "ddd", ... ),
(1, "110100010101001010101011101010111101", "eeee", ... ),
...
]
В формате кортежа это выглядит так:
(Y, X, other_info, ... )
В конце дня мне нужно обучить классификатор (например, sklearn.linear_model.logistic.LogisticRegression), используя Y и X.
Какой самый простой способ превратить строку из нулей и единиц в нечто вроде np.array, чтобы я мог запустить его через классификатор? Похоже, здесь должен быть простой ответ, но я не смог придумать /google один.
Несколько заметок:
- Я уже использую numpy/pandas/sklearn, поэтому все, что в этих библиотеках, является честной игрой.
- Для большей части того, что я делаю, удобно иметь вместе столбцы other_info в DataFrame
- Строки довольно длинные (~20000 столбцов), но общий фрейм данных не очень высокий (~500 строк).
2 ответа
Поскольку вы в первую очередь просили о способе преобразования строки из нулей и единиц в массив numpy, я предложу свое решение следующим образом:
d = '0101010000' * 2000 # create a 20,000 long string of 1s and 0s
d_array = np.fromstring(d, 'int8') - 48 # 48 is ascii 0. ascii 1 is 49
Это сравнительно выгодно для решения @DSM с точки зрения скорости:
In [21]: timeit numpy.fromstring(d, dtype='int8') - 48
10000 loops, best of 3: 35.8 us per loop
In [22]: timeit numpy.fromiter(d, dtype='int', count=20000)
100 loops, best of 3: 8.57 ms per loop
Как насчет чего-то вроде этого:
Сделайте фрейм данных:
In [82]: v = [
....: (1, "000010101001010101011101010101110101", "aaa"),
....: (0, "111101010100101010101110101010111010", "bb"),
....: (0, "100010110100010101001010101011101010", "ccc"),
....: (1, "000010101001010101011101010101110101", "ddd"),
....: (1, "110100010101001010101011101010111101", "eeee"),
....: ]
In [83]:
In [83]: df = pandas.DataFrame(v)
Мы можем использовать fromiter
или же array
чтобы получить ndarray
:
In [84]: d ="000010101001010101011101010101110101"
In [85]: np.fromiter(d, int) # better: np.fromiter(d, int, count=len(d))
Out[85]:
array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0,
1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1])
In [86]: np.array(list(d), int)
Out[86]:
array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0,
1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1])
Для этого может существовать плавный векторизованный способ, но я бы просто применил к значениям очевидную функцию для каждой записи и продолжил свой день:
In [87]: df[1]
Out[87]:
0 000010101001010101011101010101110101
1 111101010100101010101110101010111010
2 100010110100010101001010101011101010
3 000010101001010101011101010101110101
4 110100010101001010101011101010111101
Name: 1
In [88]: df[1] = df[1].apply(lambda x: np.fromiter(x, int)) # better with count=len(x)
In [89]: df
Out[89]:
0 1 2
0 1 [0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 aaa
1 0 [1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 bb
2 0 [1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 ccc
3 1 [0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 ddd
4 1 [1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 eeee
In [90]: df[1][0]
Out[90]:
array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0,
1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1])