Получение coredump segfault при перезапуске метода Lanczos после 3 итераций

Поэтому я работаю над сходимостью алгоритма Ланцоша. Я реализовал это на языке C, сначала вычисляю как матрицу V, ортонормированную для подпространства Крылова, так и трехдиагональную симметричную матрицу T, после чего вычисляю собственные значения и собственные векторы T и векторы Ритца, чтобы определить Вектор инициализации для следующей итерации, если допуск не достигнут.

В цикле while я проверяю перед переходом к следующей итерации, достигнут ли допуск или нет. Программа компилируется, но когда я ее выполняю, я получаю дамп ядра segfault после 3 итераций, я компилирую с помощью -g, gdb говорит мне, что у меня есть дамп ядра в цикле, который вычисляет матрицу Ритца (или векторы Ритца, которые являются собственными векторами матрицы A):

for(int i = 0 ; i < N ; i++) 
            Ritz[i][k] = temp[i]; 

Я думаю, что написал свою программу правильно, но я не знаю, в чем проблема. Буду признателен за помощь в этом, ребята! PS: скомпилировать gcc -g -Wall -std=c99 test.c -o test -llapacke -lm

код:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <unistd.h>
#include <errno.h>
#include <float.h>
#include <lapacke.h>

double Absolute_value(double numb)
{
    if(numb < 0)
        return (double)((-1)*(numb));
    else
        return numb;
}

double Forbenius_norm(double ** A, int N)
{
    double forbenius_norm = 0.000000;
    for(int i = 0 ; i < N ; i++)
    {
        for(int j = 0 ; j < N ; j++)
        {
            forbenius_norm += abs(A[i][j])*abs(A[i][j]);
        }
    }   
    forbenius_norm = sqrt(forbenius_norm);
    return forbenius_norm;
}

double Norme_vector(double * v, int N)
{
    double norme= 0.;
    double somme = 0.;
    int i;
    for (i = 0; i < N; i++){
        somme += (v[i] * v[i]);
    }

    norme = sqrt(somme);
    return norme;
}

double * Prod_Scal_Vect(double * v, int t, double e)
{
    double * prod =(double *) malloc ( t* sizeof( double));
    int i;
    for( i = 0; i < t ; i++){
        prod[i] = e * v[i];
    }
    return prod;
}

double * Div_vect_scal(double * v, int t, double e)
{
    double * prod =(double *) malloc ( t* sizeof( double));
    int i;
    for( i = 0; i < t ; i++){
        prod[i] = v[i]/e;
    }
    return prod;
}

double Self_Dot_Prod(double *v,int t,double *w,int s)
{
    double res = 0.;
    int i;

    if( t != s )
        printf("Erreur : deux vecteurs non conformes au produit scalaire\n");
    else
    { 
        for( i = 0; i < t; i++)
        {
            res += v[i] * w[i];
        }

        //return res;
    }
    return res;
}

double * vect_Sub(double *v,int t,double *w,int s)
{
    double  * res = (double *) malloc ( s * sizeof(double));
    int i;
    if( t != s )
        printf("Erreur : deux vecteurs non conformes à l'addition de vecteurs\n");
    else
    { 
        for( i = 0; i < t; i++)
        {
            res[i] = v[i] - w[i];
        }

        //return res;
    }
    return res;
}

double * Prod_Mat_Vect( double ** A, int nbl, int nbc, double * v, int t)
{
    //double * res = calloc ( nbl, sizeof( double));
    double * res =(double *) malloc ( nbl* sizeof( double));    
    double somme = 0.;
    int i,j;

    if(t != nbc)
    {   perror(" erreur 4");    
        return NULL;
    }
    else
    {
        for( i = 0; i < nbl; i++)
        {
            somme = 0.;

            for( j = 0; j < nbc; j++)
            {
                somme += v[j] * A[i][j];
            }
            res[i] = somme;
        }
        return res;
    }
}

double * assign_vect(double * v, int n, double * w, int m)
{
    if( n != m)
        printf("Erreur: La taille des deux vecteurs doit être identique pour l'affectaion\n");
    else
    {
        for(int i = 0 ; i < n ; i++)
            v[i] = w[i];
        //return v;
    }
    return v;
}

void print_matrix( double ** A , int m , int n) {
        int i, j;

    for( i = 0; i < m; i++ ) 
    {
                for( j = 0; j < n; j++ ) 
        {
            printf( " %lf", A[i][j] );
        }
                printf( "\n" );
        }
}

int main (int argc , char ** argv)
{
    int N=4;    
    int m = 2;
    //int lda = m;

    double ** A = (double **) malloc ( N * sizeof(double*) );

    for( int i = 0 ; i < N ; i++ )  
        A[i] = (double*) malloc( N * sizeof(double) );

    double ** T = (double **) malloc( m * sizeof(double*) );

    for( int i = 0 ; i < m ; i++ )  
        T[i] = (double *) malloc ( m * sizeof(double) );

    double ** Krylov = (double **) malloc (N * sizeof(double*) );

    for( int i = 0 ; i < N ; i++ )  
        Krylov[i] = (double *) malloc( m * sizeof(double) );



    double ** Ritz = calloc( N , sizeof(double*) );

    for( int i = 0 ; i < N ; i++ )  
        Ritz[i] = calloc( m , sizeof(double*) );

    double ** Eigenvect_matrix = calloc ( m , sizeof(double*));

    for( int i = 0 ; i < m ; i++ )
        Eigenvect_matrix[i] = calloc ( m , sizeof(double));

    double * v = (double *) malloc(N * sizeof(double));
    double * init = (double *) malloc (N * sizeof(double));
    double * gamma = (double *) malloc(N * sizeof(double)); 

    double * eigenvect = calloc(m,sizeof(double));
    double * tab = calloc(m,sizeof(double));
    double * temp = calloc(N,sizeof(double));
    double * a = calloc(m*m,sizeof(double));
    double * w = calloc(m,sizeof(double));

    double beta = 0.000000;
    double alpha = 0.000000;
    int j=0; 
    int k=1;
    int info = -1;
    int n=m,lda=m;
    int count = 0;
    double test_tolerance = 999;

    A[0][0]= 9; A[0][1]=  1;A[0][2]= -2;A[0][3]=  1;
    A[1][0]= 1; A[1][1]=  8;A[1][2]= -3;A[1][3]= -2;
    A[2][0]= -2;A[2][1]= -3;A[2][2]=  7;A[2][3]= -1;
    A[3][0]= 1; A[3][1]= -2;A[3][2]= -1;A[3][3]=  6;

    printf("\n\n\tOriginal Matrix A before Lanczos Algorithm\n\n");
    for(int i = 0 ; i < N ; i++)
        {
                for(int j = 0 ; j < N ; j++)
                {
                        printf("%lf\t",A[i][j]);
                }
                printf("\n");
        }


    v[0] = 1.000000;    

    for(int i = 0 ; i < N ; i++)
        init[i] = 0.000000;

    for(int i = 1 ; i < N ; i++)
        v[i] = 0.000000;

    for(int i = 0 ; i < N ; i++)
        Krylov[i][0] = v[i];

    while(test_tolerance > 0.00001 || count != 50)
    {
        printf("iteration: %d\n",count+1);
        for(int l = 0 ; l < m-1 ; l++)
        {

            gamma = Prod_Mat_Vect(A, N, N, v, N);
            alpha = Self_Dot_Prod(v, N, gamma, N);
            gamma = vect_Sub(gamma,N,vect_Sub(Prod_Scal_Vect(v, N,alpha),N,Prod_Scal_Vect(init, N,beta),N),N);
            init = assign_vect(init, N, v, N); 
            beta = Norme_vector(gamma, N);
            v = Div_vect_scal(gamma, N, beta);

            for(int i = 1 ; i < N ; i++)
            {
                Krylov[i][k] = v[i];
            }
            k++;

            T[l][l] = alpha;
            T[l+1][j] = beta;
            T[l][j+1] = beta;
            j++;
        }   

        gamma = Prod_Mat_Vect(A, N, N, v, N);
        alpha = Self_Dot_Prod(v, N, gamma, N);
        T[m-1][m-1] = alpha;
        gamma = vect_Sub(gamma,N,vect_Sub(Prod_Scal_Vect(v, N,alpha),N,Prod_Scal_Vect(init, N,beta),N),N);
        init = assign_vect(init, N, v, N); 
        test_tolerance = Norme_vector(gamma, N);
        //printf("tolerance1 %lf\n",test_tolerance);
        test_tolerance = Absolute_value(test_tolerance);
        //printf("tolerance2 %lf\n",test_tolerance);    

        /*printf("\n\n\tTridiagonal Matrix T\n\n"); 
        for(int i = 0 ; i < m ; i++)
        {
            for(int j = 0 ; j < m ; j++)
            {
                printf("%lf\t",T[i][j]);
            }
            printf("\n");
        }*/
        //printf("\n\n\tLinearied matrix\n\n");
        for(int i = 0 ; i < m ; i++ )
        {
            for(int j = 0 ; j < m ; j++)
            {
                a[i*m+j] = T[i][j];
                //printf("a[%d][%d]%lf ",i,j,a[i*m+j]);
            }
            //printf("\n");
        }
        /*printf("\n\n\tKrylov Matrix \n\n");

        for(int i = 0 ; i < N ; i++)
        {
            for(int j = 0 ; j < m ; j++)
            {
                printf("%lf\t",Krylov[i][j]);
            }
            printf("\n");
        }
        */  
        info = LAPACKE_dsyev( LAPACK_ROW_MAJOR, 'V', 'U', n, a, lda, w );

        /*printf("\n\n\tEigenvectors\n\n");
        for(int i = 0 ; i < m ; i++ )
        {
            for(int j = 0 ; j < m ; j++)
            {
                printf("%lf\t",a[i*m+j]);
            }
            printf("\n");
        }
        */
        //printf("\n\n\tDelinearized a for eigen vetors\n\n");
        for(int i = 0 ; i < m ; i++ )
                {
                        for(int j = 0 ; j < m ; j++)
                        {
                                Eigenvect_matrix[i][j] = a[i*m+j];
                                //printf("%lf\t",Eigenvect_matrix[i][j]);
                        }
                        //printf("\n");
                }

        for(int i = 0 ; i < m ; i++)
            tab[i] = w[i];  
        /*printf("\n\tEigenvalues\n\n");

        for(int j = 0 ; j < m ; j++)
            printf("%lf\t",tab[j]);
        printf("\n");
        */
        int index = 0;

        for(int k = 0 ; k < m ; k++)
        {   
            for(int i = 0 ; i < m ; i++)
            {
                eigenvect[i] = a[index];    
                index++;
            }

            test_tolerance *= Absolute_value(eigenvect[m-1]); 

            /*for(int j = 0 ; j < m ; j++)
                printf("%lf\t",a[j]);*/

            temp = Prod_Mat_Vect(Krylov, N, m, eigenvect, m);

            for(int i = 0 ; i < N ; i++)
            {   
                Ritz[i][k] = temp[i]; 
                printf("\ti=%d ,\tk=%d\n",i,k);
            }       
        }
        printf("tolerance : %lf\n",test_tolerance); 

        count++;
        printf("\n");       
        for(int i = 0 ; i < N ; i++)
        {
            init[i] = Ritz[i][0] + Ritz[i][1];  
            init[i] /= Norme_vector(init,N);    
        }

    }

    /*printf("\n\n\tRitz vectors\n\n");
    for(int i = 0 ; i < N ; i++)
    {
        for(int j = 0 ; j < m ; j++)
        {
            printf("%lf\t",Ritz[i][j]);
        }
        printf("\n");
    }*/
    return 0;
}   

1 ответ

У вас повреждение памяти. Вы перезаписываете значение "Ritz[0]" в одной точке. Вы можете узнать это, напечатав значение Ritz, затем Ritz[0] в ГБД, как только происходит сбой.

Затем, чтобы выяснить, где он перезаписывается, установите точку останова после ее выделения (например, строка 183) и запустите программу до нее. Затем используйте watch Ritz[0] команда, чтобы сказать GDB сломаться, когда что-то пишет в это место. Пусть GDB продолжится. Это достигает этой петли:

for(int i = 1 ; i < N ; i++)
{
    Krylov[i][k] = v[i];
}

куда i=3 а также k=4, Крылов имеет N (4) элементов, но каждый подмассив имеет только m (2) элементы. Вот где ты выходишь за пределы.

Теперь я вижу цикл, который проверяет цикл for lи увеличивая k пока идет. Тем не менее, я думаю, что вам не хватает k = 1 в начале внутри внешнего цикла while (строка 236).

После исправления вы попадаете в другую аварию. Вы врезались в линию 121 (somme += v[j] * A[i][j];), с i=0 а также j=0, Похоже A[0] был переписан здесь, и печать его в GDB снова подтверждает это. поскольку A является параметром, нам нужно выяснить, из какой именно переменной он на самом деле, так что глядя на стек с bt мы находим это пришло test.c:346:

temp = Prod_Mat_Vect(Krylov, N, m, eigenvect, m);

Так A там было Krylov, Похоже Krylov[0] был перезаписан, поэтому давайте сделаем то же самое с точками наблюдения, как мы сделали с Ritz[0],

GDB выводит нас на линию 256 (T[l][j+1] = beta;), с l=0 а также j=4, Снова, TПодмассивы были распределены только с 2 элементами, так что значение для j явно неправильно. Если посмотреть на структуру цикла еще раз, это та же ошибка, что и в прошлый раз, но только с другой переменной.

настройка j = 0 внутри начала внешнего цикла while (снова строка 236) это тоже исправляется.

Похоже, это все с точки зрения немедленного и катастрофического повреждения памяти, потому что после этого программа работает нормально.


На менее важной ноте у вас есть ошибка, это должно быть sizeof(double):

 for( int i = 0 ; i < N ; i++ )  
    Ritz[i] = calloc( m , sizeof(double*) );
Другие вопросы по тегам