Создание двоичной матрицы в R с большим набором данных
Я работаю с версией R 3.2.3 на машине с Linux.
У меня есть набор данных с 1374,439 наблюдениями по 145 переменным. Мне нужно преобразовать этот кадр данных в двоичную матрицу.
Я посмотрел на разных форумах и нашел решение с пакетом reshape2 и функциями melt()
а также dcast()
, Это прекрасно работает с небольшим набором данных (я всегда сначала пробовал свои коды на небольших деталях, чтобы проверить, выполняет ли я то, что я хочу). Когда я хочу использовать этот код для всего набора данных, он больше не работает.
Я просмотрел другие форумы и попробовал (безуспешно) следующие функции:
table()
sparseMatrix()
а такжеas.Matrix()
xtabs()
Я также нашел использование пакетов dplyr и tidyr для больших наборов данных. Но мне это не удалось. Честно говоря, я тоже боролся с пониманием. Но похоже, что размер моего набора данных - главная проблема...
Данные выглядят так (это короткая версия):
Code_1 Code_2 Code_3 Code_4 Code_5 Code_6 Code_7
1 M201 M2187 M670
2 O682 O097 Z370 O48 O759
3 S7211 Z966 Z501
И я хотел бы иметь это (двоичная матрица):
M201 M2187 M670 O682 O097 Z370 O48 0759 S7211 Z966 Z501
1 1 1 1 0 0 0 0 0 0 0 0
2 0 0 0 1 1 1 1 1 0 0 0
3 0 0 0 0 0 0 0 0 1 1 1
Я также хотел бы быть точным, что пробелы не являются NA. Это действительно пустые места.
3 ответа
Что вам действительно нужно - это Matrix::sparse.model.matrix()
функция. Ответы ниже создают плотные матрицы, которые быстро съедят все ваши оперативные памяти в этом наборе данных.
Вот простой пример:
M = sparse.model.matrix( ~ ., data=data.frame(x = letters , y = LETTERS))
Если вам не нужен перехват, используйте следующую формулу
M = sparse.model.matrix( ~ -1 + ., data=data.frame(x = letters , y = LETTERS))
Мы можем подать заявку table
после melt
данные в long
форматand remove the blank (
''`) элементы.
library(reshape2)
table(droplevels(subset(melt(as.matrix(df1)), value!='', select = -2)))
# value
# Var1 M201 M2187 M670 O097 O48 O682 O759 S7211 Z370 Z501 Z966
# 1 1 1 1 0 0 0 0 0 0 0 0
# 2 0 0 0 1 1 1 1 0 1 0 0
# 3 0 0 0 0 0 0 0 1 0 1 1
Или используя dplyr/tidyr
library(dplyr)
library(tidyr)
data_frame(rn = rep(1:nrow(df1), ncol(df1)), v1 = unlist(df1)) %>%
filter(v1!="") %>%
group_by(rn, v1) %>%
summarise(n = n()) %>%
spread(v1, n, fill = 0)
# rn M201 M2187 M670 O097 O48 O682 O759 S7211 Z370 Z501 Z966
# <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 1 1 1 1 0 0 0 0 0 0 0 0
#2 2 0 0 0 1 1 1 1 0 1 0 0
#3 3 0 0 0 0 0 0 0 1 0 1 1
Или используя dcast
от data.table
library(data.table)
dcast(data.table(rn = rep(1:nrow(df1), ncol(df1)),
v1 = unlist(df1))[v1!=''], rn~v1, length)
# rn M201 M2187 M670 O097 O48 O682 O759 S7211 Z370 Z501 Z966
#1: 1 1 1 1 0 0 0 0 0 0 0 0
#2: 2 0 0 0 1 1 1 1 0 1 0 0
#3: 3 0 0 0 0 0 0 0 1 0 1 1
Вот базовый подход R:
## define input data.frame
data <- data.frame(Code_1=c('M201','O682','S7211'),Code_2=c('','','Z966'),Code_3=c('M2187',
'O097',''),Code_4=c('M670','Z370','Z501'),Code_5=c('','',''),Code_6=c('','O48',''),Code_7=c(
'','O759',''),stringsAsFactors=F);
## coerce to a matrix to speed up subsequent operations
data <- as.matrix(data);
## solution
im <- which(arr.ind=T,data!='');
u <- unique(data[im[order(im[,'row'],im[,'col']),]]);
res <- matrix(0L,nrow(data),length(u),dimnames=list(NULL,u));
res[cbind(im[,'row'],match(data[im],u))] <- 1L;
res;
## M201 M2187 M670 O682 O097 Z370 O48 O759 S7211 Z966 Z501
## [1,] 1 1 1 0 0 0 0 0 0 0 0
## [2,] 0 0 0 1 1 1 1 1 0 0 0
## [3,] 0 0 0 0 0 0 0 0 1 1 1
Бенчмаркинг
library(microbenchmark);
library(reshape2);
library(dplyr);
library(tidyr);
library(data.table);
akrun1 <- function(df1) table(droplevels(subset(melt(as.matrix(df1)),value!='',select=-2)));
akrun2 <- function(df1) data_frame(rn=rep(1:nrow(df1),ncol(df1)),v1=unlist(df1)) %>% filter(v1!="") %>% group_by(rn,v1) %>% summarise(n=n()) %>% spread(v1,n,fill=0) %>% ungroup() %>% select(-rn);
akrun3 <- function(df1) dcast(data.table(rn=rep(1:nrow(df1),ncol(df1)),v1=unlist(df1))[v1!=''],rn~v1,length,value.var='v1')[,!'rn',with=FALSE];
bgoldst <- function(data) { data <- as.matrix(data); im <- which(arr.ind=T,data!=''); u <- unique(data[im[order(im[,'row'],im[,'col']),]]); res <- matrix(0L,nrow(data),length(u),dimnames=list(NULL,u)); res[cbind(im[,'row'],match(data[im],u))] <- 1L; res; };
harmonize <- function(res) {
res <- as.matrix(if ('table'%in%class(res)) unclass(res) else res);
res <- res[,order(colnames(res))];
res <- res[do.call(order,as.data.frame(res)),];
res;
}; ## end harmonize()
## OP's example
data <- data.frame(Code_1=c('M201','O682','S7211'),Code_2=c('','','Z966'),Code_3=c('M2187','O097',''),Code_4=c('M670','Z370','Z501'),Code_5=c('','',''),Code_6=c('','O48',''),Code_7=c('','O759',''),stringsAsFactors=F);
ex <- harmonize(akrun1(data));
all.equal(ex,harmonize(akrun2(data)),check.attributes=F);
## [1] TRUE
all.equal(ex,harmonize(akrun3(data)),check.attributes=F);
## [1] TRUE
all.equal(ex,harmonize(bgoldst(data)),check.attributes=F);
## [1] TRUE
microbenchmark(akrun1(data),akrun2(data),akrun3(data),bgoldst(data));
## Unit: microseconds
## expr min lq mean median uq max neval
## akrun1(data) 1155.945 1287.2345 1356.0013 1356.301 1396.072 1745.678 100
## akrun2(data) 4053.292 4313.7315 4639.1197 4544.664 4763.408 6839.875 100
## akrun3(data) 5866.965 6115.4320 6542.8618 6353.848 6601.886 11951.178 100
## bgoldst(data) 108.197 144.1195 162.6198 162.936 180.684 240.769 100
## scale test
set.seed(1L);
NR <- 1374439L; NC <- 145L; NU <- as.integer(11/7*NC); probBlank <- 10/21;
repeat { u <- paste0(sample(LETTERS,NU,T),sprintf('%03d',sample(0:999,NU,T))); if (length(u)==NU) break; };
data <- setNames(nm=paste0('Code_',seq_len(NC)),as.data.frame(matrix(sample(c('',u),NR*NC,T,c(probBlank,rep((1-probBlank)/NU,NU))),NR)));
ex <- harmonize(akrun1(data));
all.equal(ex,harmonize(akrun2(data)),check.attributes=F);
## Error: cannot allocate vector of size 1.5 Gb
all.equal(ex,harmonize(akrun3(data)),check.attributes=F);
## Error: cannot allocate vector of size 1.5 Gb
all.equal(ex,harmonize(bgoldst(data)),check.attributes=F);
## [1] "Mean relative difference: 1.70387"
microbenchmark(akrun1(data),bgoldst(data),times=1L);
## Unit: seconds
## expr min lq mean median uq max neval
## akrun1(data) 101.81215 101.81215 101.81215 101.81215 101.81215 101.81215 1
## bgoldst(data) 30.82899 30.82899 30.82899 30.82899 30.82899 30.82899 1
Я не знаю точно, почему мой результат не идентичен akrun1()
, но, похоже, его результат неверен, так как в нем есть недвоичные значения:
unique(c(ex));
## [1] 0 1 2 3 4 5 6 7 8