Использование CUDA-GDB с NVRTC
У меня есть приложение, которое генерирует исходный код CUDA C++, компилирует его в PTX во время выполнения, используя NVRTC
, а затем создает модули CUDA из него с помощью API драйвера CUDA.
Если я отлаживаю это приложение, используя cuda-gdb
, он отображает ядро (где произошла ошибка) в обратном следе, но не показывает номер строки.
Я экспортирую сгенерированный исходный код в файл и даю каталог cuda-gdb
с использованием --directory
вариант. Я также попытался передать его имя файла nvrtcCreateProgram()
(name
аргумент). Я использую параметры компиляции --device-debug
а также --generate-line-info
с NVRTC.
Есть ли способ позволить cuda-gdb
знать местоположение сгенерированного файла исходного кода и отображать информацию о номере строки в его обратном следе?
1 ответ
Я был в состоянии сделать отладку на уровне исходного кода ядра на nvrtc
ядро с cuda-gdb
следующее:
- начать с примера кода vectorAdd_nvrtc
- изменить
compileFileToPTX
рутина (предоставляетсяnvrtc_helper.h
) добавить--device-debug
переключаться во время шага compile-cu-to-ptx. - изменить
loadPTX
рутина (предоставляетсяnvrtc_helper.h
) добавитьCU_JIT_GENERATE_DEBUG_INFO
опция (установлена в 1) дляcuModuleLoadDataEx
шаг загрузки /JIT PTX в двоичный файл. - скомпилировать основную функцию (vectorAdd.cpp) с
-g
вариант.
Вот полный тестовый пример / сессия. Я только показываю файл vectorAdd.cpp из проекта, потому что это единственный файл, который я изменил. Другие файлы проекта идентичны файлам примера проекта:
$ cat vectorAdd.cpp
/**
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
/**
* Vector addition: C = A + B.
*
* This sample is a very basic sample that implements element by element
* vector addition. It is the same as the sample illustrating Chapter 2
* of the programming guide with some additions like error checking.
*/
#include <stdio.h>
#include <cmath>
// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda.h>
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <nvrtc_helper.h>
#include <iostream>
#include <fstream>
/**
* Host main routine
*/
void my_compileFileToPTX(char *filename, int argc, char **argv, char **ptxResult,
size_t *ptxResultSize, int requiresCGheaders) {
std::ifstream inputFile(filename,
std::ios::in | std::ios::binary | std::ios::ate);
if (!inputFile.is_open()) {
std::cerr << "\nerror: unable to open " << filename << " for reading!\n";
exit(1);
}
std::streampos pos = inputFile.tellg();
size_t inputSize = (size_t)pos;
char *memBlock = new char[inputSize + 1];
inputFile.seekg(0, std::ios::beg);
inputFile.read(memBlock, inputSize);
inputFile.close();
memBlock[inputSize] = '\x0';
int numCompileOptions = 0;
char *compileParams[2];
std::string compileOptions;
if (requiresCGheaders) {
char HeaderNames[256];
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(HeaderNames, sizeof(HeaderNames), "%s", "cooperative_groups.h");
#else
snprintf(HeaderNames, sizeof(HeaderNames), "%s", "cooperative_groups.h");
#endif
compileOptions = "--include-path=";
std::string path = sdkFindFilePath(HeaderNames, argv[0]);
if (!path.empty()) {
std::size_t found = path.find(HeaderNames);
path.erase(found);
} else {
printf(
"\nCooperativeGroups headers not found, please install it in %s "
"sample directory..\n Exiting..\n",
argv[0]);
}
compileOptions += path.c_str();
compileParams[0] = reinterpret_cast<char *>(
malloc(sizeof(char) * (compileOptions.length() + 1)));
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(compileParams[0], sizeof(char) * (compileOptions.length() + 1),
"%s", compileOptions.c_str());
#else
snprintf(compileParams[0], compileOptions.size(), "%s",
compileOptions.c_str());
#endif
numCompileOptions++;
}
compileOptions = "--device-debug ";
compileParams[numCompileOptions] = reinterpret_cast<char *>(malloc(sizeof(char) * (compileOptions.length() + 1)));
snprintf(compileParams[numCompileOptions], compileOptions.size(), "%s", compileOptions.c_str());
numCompileOptions++;
// compile
nvrtcProgram prog;
NVRTC_SAFE_CALL("nvrtcCreateProgram",
nvrtcCreateProgram(&prog, memBlock, filename, 0, NULL, NULL));
nvrtcResult res = nvrtcCompileProgram(prog, numCompileOptions, compileParams);
// dump log
size_t logSize;
NVRTC_SAFE_CALL("nvrtcGetProgramLogSize",
nvrtcGetProgramLogSize(prog, &logSize));
char *log = reinterpret_cast<char *>(malloc(sizeof(char) * logSize + 1));
NVRTC_SAFE_CALL("nvrtcGetProgramLog", nvrtcGetProgramLog(prog, log));
log[logSize] = '\x0';
if (strlen(log) >= 2) {
std::cerr << "\n compilation log ---\n";
std::cerr << log;
std::cerr << "\n end log ---\n";
}
free(log);
NVRTC_SAFE_CALL("nvrtcCompileProgram", res);
// fetch PTX
size_t ptxSize;
NVRTC_SAFE_CALL("nvrtcGetPTXSize", nvrtcGetPTXSize(prog, &ptxSize));
char *ptx = reinterpret_cast<char *>(malloc(sizeof(char) * ptxSize));
NVRTC_SAFE_CALL("nvrtcGetPTX", nvrtcGetPTX(prog, ptx));
NVRTC_SAFE_CALL("nvrtcDestroyProgram", nvrtcDestroyProgram(&prog));
*ptxResult = ptx;
*ptxResultSize = ptxSize;
#ifdef DUMP_PTX
std::ofstream my_f;
my_f.open("vectorAdd.ptx");
for (int i = 0; i < ptxSize; i++)
my_f << ptx[i];
my_f.close();
#endif
if (requiresCGheaders) free(compileParams[0]);
}
CUmodule my_loadPTX(char *ptx, int argc, char **argv) {
CUmodule module;
CUcontext context;
int major = 0, minor = 0;
char deviceName[256];
// Picks the best CUDA device available
CUdevice cuDevice = findCudaDeviceDRV(argc, (const char **)argv);
// get compute capabilities and the devicename
checkCudaErrors(cuDeviceGetAttribute(
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice));
checkCudaErrors(cuDeviceGetAttribute(
&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevice));
checkCudaErrors(cuDeviceGetName(deviceName, 256, cuDevice));
printf("> GPU Device has SM %d.%d compute capability\n", major, minor);
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGet(&cuDevice, 0));
checkCudaErrors(cuCtxCreate(&context, 0, cuDevice));
CUjit_option opt[1];
opt[0] = CU_JIT_GENERATE_DEBUG_INFO;
void **vals = new void *[1];
vals[0] = (void *)(size_t)1;
checkCudaErrors(cuModuleLoadDataEx(&module, ptx, 1, opt, vals));
free(ptx);
return module;
}
int main(int argc, char **argv) {
char *ptx, *kernel_file;
size_t ptxSize;
kernel_file = sdkFindFilePath("vectorAdd_kernel.cu", argv[0]);
my_compileFileToPTX(kernel_file, argc, argv, &ptx, &ptxSize, 0);
CUmodule module = my_loadPTX(ptx, argc, argv);
CUfunction kernel_addr;
checkCudaErrors(cuModuleGetFunction(&kernel_addr, module, "vectorAdd"));
// Print the vector length to be used, and compute its size
int numElements = 50000;
size_t size = numElements * sizeof(float);
printf("[Vector addition of %d elements]\n", numElements);
// Allocate the host input vector A
float *h_A = reinterpret_cast<float *>(malloc(size));
// Allocate the host input vector B
float *h_B = reinterpret_cast<float *>(malloc(size));
// Allocate the host output vector C
float *h_C = reinterpret_cast<float *>(malloc(size));
// Verify that allocations succeeded
if (h_A == NULL || h_B == NULL || h_C == NULL) {
fprintf(stderr, "Failed to allocate host vectors!\n");
exit(EXIT_FAILURE);
}
// Initialize the host input vectors
for (int i = 0; i < numElements; ++i) {
h_A[i] = rand() / static_cast<float>(RAND_MAX);
h_B[i] = rand() / static_cast<float>(RAND_MAX);
}
// Allocate the device input vector A
CUdeviceptr d_A;
checkCudaErrors(cuMemAlloc(&d_A, size));
// Allocate the device input vector B
CUdeviceptr d_B;
checkCudaErrors(cuMemAlloc(&d_B, size));
// Allocate the device output vector C
CUdeviceptr d_C;
checkCudaErrors(cuMemAlloc(&d_C, size));
// Copy the host input vectors A and B in host memory to the device input
// vectors in device memory
printf("Copy input data from the host memory to the CUDA device\n");
checkCudaErrors(cuMemcpyHtoD(d_A, h_A, size));
checkCudaErrors(cuMemcpyHtoD(d_B, h_B, size));
// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 256;
int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;
printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid,
threadsPerBlock);
dim3 cudaBlockSize(threadsPerBlock, 1, 1);
dim3 cudaGridSize(blocksPerGrid, 1, 1);
void *arr[] = {reinterpret_cast<void *>(&d_A), reinterpret_cast<void *>(&d_B),
reinterpret_cast<void *>(&d_C),
reinterpret_cast<void *>(&numElements)};
checkCudaErrors(cuLaunchKernel(kernel_addr, cudaGridSize.x, cudaGridSize.y,
cudaGridSize.z, /* grid dim */
cudaBlockSize.x, cudaBlockSize.y,
cudaBlockSize.z, /* block dim */
0, 0, /* shared mem, stream */
&arr[0], /* arguments */
0));
checkCudaErrors(cuCtxSynchronize());
// Copy the device result vector in device memory to the host result vector
// in host memory.
printf("Copy output data from the CUDA device to the host memory\n");
checkCudaErrors(cuMemcpyDtoH(h_C, d_C, size));
// Verify that the result vector is correct
for (int i = 0; i < numElements; ++i) {
if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) {
fprintf(stderr, "Result verification failed at element %d!\n", i);
exit(EXIT_FAILURE);
}
}
printf("Test PASSED\n");
// Free device global memory
checkCudaErrors(cuMemFree(d_A));
checkCudaErrors(cuMemFree(d_B));
checkCudaErrors(cuMemFree(d_C));
// Free host memory
free(h_A);
free(h_B);
free(h_C);
printf("Done\n");
return 0;
}
$ nvcc -g -I/usr/local/cuda/samples/common/inc -o test vectorAdd.cpp -lnvrtc -lcuda
$ cuda-gdb ./test
NVIDIA (R) CUDA Debugger
10.0 release
Portions Copyright (C) 2007-2018 NVIDIA Corporation
GNU gdb (GDB) 7.12
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-pc-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./test...done.
(cuda-gdb) break vectorAdd
Function "vectorAdd" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (vectorAdd) pending.
(cuda-gdb) r
Starting program: /home/user2/misc/junk/vectorAdd_nvrtc/test
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
[New Thread 0x7fffedc00700 (LWP 16789)]
> Using CUDA Device [1]: Tesla K40m
> GPU Device has SM 3.5 compute capability
[New Thread 0x7fffed3ff700 (LWP 16790)]
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
[Switching focus to CUDA kernel 0, grid 1, block (0,0,0), thread (0,0,0), device 0, sm 0, warp 0, lane 0]
Thread 1 "test" hit Breakpoint 1, vectorAdd<<<(196,1,1),(256,1,1)>>> (A=0x7fffce800000, B=0x7fffce830e00, C=0x7fffce861c00, numElements=50000) at ./vectorAdd_kernel.cu:21
21 int i = blockDim.x * blockIdx.x + threadIdx.x;
(cuda-gdb) step
23 if (i < numElements) {
(cuda-gdb) step
24 C[i] = A[i] + B[i];
(cuda-gdb) step
26 }
(cuda-gdb) quit
A debugging session is active.
Inferior 1 [process 16777] will be killed.
Quit anyway? (y or n) y
$