Нелинейная оптимизация о точечных линиях

Я пытаюсь решить проблему нелинейной оптимизации с помощью библиотеки nlopt C++. Но результат, кажется, отличается от Matlab. Задача оптимизации заключается в следующем:

У меня есть линии, пересекающиеся с сервалами в трехмерной координате $l_i(x, y, z)$. И я хочу найти точку $(x_0, y_0, z_0)$, которая минимизирует расстояние от точки до всех этих линий. То есть... подробное описание проблемы на картинке.

#include <nlopt.hpp>
#include <math.h>
#include <iostream>
#include <vector>

struct Point {
    double x;
    double y;
    double z;

    Point() : x(0.0), y(0.0), z(0.0) {}
    Point(double x_, double y_, double z_) :
        x(x_), y(y_), z(z_) {}
};
Point operator-(const Point &p1, const Point &p2)
{
    Point p;
    p.x = p1.x - p2.x;
    p.y = p1.y - p2.y;
    p.z = p1.z - p2.z;
    return p;
}
double operator*(const Point &p1, const Point &p2)
{
    double ret = 0.0;
    ret += (p1.x * p2.x + p1.y * p2.y + p1.z * p2.z);
    return ret;
}
struct Line {
    Point p1;
    Point p2;

    Line(const Point& p1_, const Point& p2_):
        p1(p1_), p2(p2_) {}
};
int aux_calcu_func(const std::vector<double> &x,
    const std::vector<Line> &lines,
    double &obj, std::vector<double> &grad)
{
    Point pCenter(x[0], x[1], x[2]);

    // object function value
    obj = 0.0;
    for (size_t i = 0; i < lines.size(); ++i)
    {
        Line line = lines[i];
        Point pA = line.p1;
        Point pB = line.p2;
        Point vAC = pCenter - pA;
        Point vAB = pB - pA;
        obj += (vAC * vAC - (vAC * vAB) * (vAC * vAB) / (vAB * vAB));
    }
    // gradient
    if (!grad.empty())
    {
        for (size_t i = 0; i < lines.size(); ++i)
        {
            Line line = lines[i];
            Point pA = line.p1;
            Point pB = line.p2;
            Point vAC = pCenter - pA;
            Point vAB = pB - pA;
            grad[0] += (2 * (vAC.x - (vAC * vAB * vAB.x / (vAB * vAB))));
            grad[1] += (2 * (vAC.y - (vAC * vAB * vAB.y / (vAB * vAB))));
            grad[2] += (2 * (vAC.z - (vAC * vAB * vAB.z / (vAB * vAB))));
        }
    }

    return 0;
}
double my_func(const std::vector<double> &x, std::vector<double> &grad,
    void *my_func_data)
{
    Line *lines = reinterpret_cast<Line*>(my_func_data);
    std::vector<Line> linesVec(lines, lines + 3);

    double ret = 0.0;
    if (0 != aux_calcu_func(x, linesVec, ret, grad))
    {
        throw "object function or gradient error!";
    }

    return ret;
}
int main(void)
{
    // 3 lines
    Line lines[3] = { { {0.6938, 2.0, 1.1678}, {0.6938, -2.0, 1.1811} },
                  { {0.8723, 2.0, -0.8626},{0.8723, -2.0, 3.0110} },
                  { {0.6080, 2.0, 0.4689}, {0.6080, -2.0, 0.5310} }
    };

    nlopt::opt opt(nlopt::LN_COBYLA, 3);
    opt.set_min_objective(my_func, lines);
    opt.set_xtol(1e-4);
    std::vector<double> x(3);
    x[0] = 0.0; x[1] = 0.0; x[2] = 0.0;
    double minf = 0.0;
    nlopt::result ret = opt.optimize(x, minf);
    /* expected x = {1.0283, 0.7247, 0.3419},
     * actually x = {0.7247, 0.2361, 0.8372}
     */

    return 0;
}

1 ответ

Интересно, что эта проблема может быть эффективно решена как проблема SOCP (программирование конуса второго порядка). Не нужно ни производных, ни начальных точек, ни проверенных глобальных решений. В основном модель выглядит так:

С некоторыми случайными данными:

Другие вопросы по тегам