Как использовать сопоставление возможностей opencv для обнаружения подделки копирования-перемещения

В моем проекте opencv я хочу обнаружить подделку при копировании и перемещении изображения. Я знаю, как использовать opencv FLANN для сопоставления функций в 2 разных изображениях, но я очень запутался в том, как использовать FLANN для обнаружения подделки копирования-перемещения в изображении.

P.S1: Я получаю ключевые точки и дескрипторы просеивания изображения и использую класс соответствия объектов.

P.S2: тип соответствия функций для меня не важен.

Заранее спасибо.

Обновить:

Эти картинки - пример того, что мне нужно

Входное изображение

Результат

И есть код, который соответствует характеристикам двух изображений и делает что-то вроде этого на двух изображениях (не одно), код в родном формате opencv для Android, как показано ниже:

    vector<KeyPoint> keypoints;
        Mat descriptors;

        // Create a SIFT keypoint detector.
        SiftFeatureDetector detector;
        detector.detect(image_gray, keypoints);
        LOGI("Detected %d Keypoints ...", (int) keypoints.size());

        // Compute feature description.
        detector.compute(image, keypoints, descriptors);
        LOGI("Compute Feature ...");


        FlannBasedMatcher matcher;
        std::vector< DMatch > matches;
        matcher.match( descriptors, descriptors, matches );

        double max_dist = 0; double min_dist = 100;

        //-- Quick calculation of max and min distances between keypoints
          for( int i = 0; i < descriptors.rows; i++ )
          { double dist = matches[i].distance;
            if( dist < min_dist ) min_dist = dist;
            if( dist > max_dist ) max_dist = dist;
          }

          printf("-- Max dist : %f \n", max_dist );
          printf("-- Min dist : %f \n", min_dist );

          //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist,
          //-- or a small arbitary value ( 0.02 ) in the event that min_dist is very
          //-- small)
          //-- PS.- radiusMatch can also be used here.
          std::vector< DMatch > good_matches;

          for( int i = 0; i < descriptors.rows; i++ )
          { if( matches[i].distance <= max(2*min_dist, 0.02) )
            { good_matches.push_back( matches[i]); }
          }

          //-- Draw only "good" matches
          Mat img_matches;
          drawMatches( image, keypoints, image, keypoints,
                       good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
                       vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );

          //-- Show detected matches
//          imshow( "Good Matches", img_matches );
          imwrite(imgOutFile, img_matches);

1 ответ

Я не знаю, если это хорошая идея использовать ключевые точки для этой проблемы. Я бы предпочел проверить соответствие шаблонов (используя скользящее окно на вашем изображении в качестве патча). По сравнению с ключевыми точками этот метод имеет недостаток, заключающийся в чувствительности к вращению и масштабированию.

Если вы хотите использовать ключевые точки, вы можете:

  • найти набор ключевых точек (SURF, SIFT или что вы хотите),
  • вычислить соответствующий счет с другими точками, с knnMatch функция грубой силы Matcher (cv::BFMatcher),
  • сохраняйте совпадения между отличительными точками, то есть точками, расстояние которых больше нуля (или порога).

    int nknn = 10; // max number of matches for each keypoint
    double minDist = 0.5; // distance threshold
    
    // Match each keypoint with every other keypoints
    cv::BFMatcher matcher(cv::NORM_L2, false);
    std::vector< std::vector< cv::DMatch > > matches;
    matcher.knnMatch(descriptors, descriptors, matches, nknn);
    
    double max_dist = 0; double min_dist = 100;
    
    //-- Quick calculation of max and min distances between keypoints
    for( int i = 0; i < descriptors.rows; i++ )
    { 
        double dist = matches[i].distance;
        if( dist < min_dist ) min_dist = dist;
        if( dist > max_dist ) max_dist = dist;
    }
    
    // Compute distance and store distant matches
    std::vector< cv::DMatch > good_matches;
    for (int i = 0; i < matches.size(); i++)
    {
        for (int j = 0; j < matches[i].size(); j++)
        {
            // The METRIC distance
            if( matches[i][j].distance> max(2*min_dist, 0.02) )
                continue;
    
            // The PIXELIC distance
            Point2f pt1 = keypoints[queryIdx].pt;
            Point2f pt2 = keypoints[trainIdx].pt;
    
            double dist = cv::norm(pt1 - pt2);
            if (dist > minDist)
                good_matches.push_back(matches[i][j]);
        }
    }
    
    Mat img_matches;
    drawMatches(image_gray, keypoints, image_gray, keypoints, good_matches, img_matches);
    
Другие вопросы по тегам