Обработка верхних треугольных элементов только с помощью NumPy einsum
Я использую numy einsum для вычисления точечных произведений массива векторов столбцов pts, формы (3,N), с самим собой, в результате чего получается матричная точка, формы (N,N) со всеми точечными произведениями. Это код, который я использую:
dotps = np.einsum('ij,ik->jk', pts, pts)
Это работает, но мне нужны только значения выше главной диагонали. то есть. верхняя треугольная часть результата без диагонали. Можно ли вычислить только эти значения с помощью einsum? или любым другим способом, который быстрее, чем использование einsum для вычисления всей матрицы?
Мой массив pts может быть довольно большим, поэтому, если бы я мог рассчитывать только те значения, которые мне нужны, это удвоило бы мою скорость вычислений.
1 ответ
Вы можете нарезать соответствующие столбцы, а затем использовать np.einsum
-
R,C = np.triu_indices(N,1)
out = np.einsum('ij,ij->j',pts[:,R],pts[:,C])
Пробный прогон -
In [109]: N = 5
...: pts = np.random.rand(3,N)
...: dotps = np.einsum('ij,ik->jk', pts, pts)
...:
In [110]: dotps
Out[110]:
array([[ 0.26529103, 0.30626052, 0.18373867, 0.13602931, 0.51162729],
[ 0.30626052, 0.56132272, 0.5938057 , 0.28750708, 0.9876753 ],
[ 0.18373867, 0.5938057 , 0.84699103, 0.35788749, 1.04483158],
[ 0.13602931, 0.28750708, 0.35788749, 0.18274288, 0.4612556 ],
[ 0.51162729, 0.9876753 , 1.04483158, 0.4612556 , 1.82723949]])
In [111]: R,C = np.triu_indices(N,1)
...: out = np.einsum('ij,ij->j',pts[:,R],pts[:,C])
...:
In [112]: out
Out[112]:
array([ 0.30626052, 0.18373867, 0.13602931, 0.51162729, 0.5938057 ,
0.28750708, 0.9876753 , 0.35788749, 1.04483158, 0.4612556 ])
Оптимизация дальше -
Давайте рассмотрим наш подход и посмотрим, есть ли возможности для улучшения производительности.
In [126]: N = 5000
In [127]: pts = np.random.rand(3,N)
In [128]: %timeit np.triu_indices(N,1)
1 loops, best of 3: 413 ms per loop
In [129]: R,C = np.triu_indices(N,1)
In [130]: %timeit np.einsum('ij,ij->j',pts[:,R],pts[:,C])
1 loops, best of 3: 1.47 s per loop
Оставаясь в рамках ограничений памяти, похоже, что мы ничего не можем сделать с оптимизацией np.einsum
, Итак, давайте сместим акцент на np.triu_indices
,
За N = 4
, у нас есть:
In [131]: N = 4
In [132]: np.triu_indices(N,1)
Out[132]: (array([0, 0, 0, 1, 1, 2]), array([1, 2, 3, 2, 3, 3]))
Кажется, что он создает регулярную модель, вроде как изменяющуюся. Это может быть записано с накопленной суммой, которая имеет сдвиги в тех 3
а также 5
позиции. Думая в общем, мы бы закончили кодировать что-то вроде этого -
def triu_indices_cumsum(N):
# Length of R and C index arrays
L = (N*(N-1))/2
# Positions along the R and C arrays that indicate
# shifting to the next row of the full array
shifts_idx = np.arange(2,N)[::-1].cumsum()
# Initialize "shift" arrays for finally leading to R and C
shifts1_arr = np.zeros(L,dtype=int)
shifts2_arr = np.ones(L,dtype=int)
# At shift positions along the shifts array set appropriate values,
# such that when cumulative summed would lead to desired R and C arrays.
shifts1_arr[shifts_idx] = 1
shifts2_arr[shifts_idx] = -np.arange(N-2)[::-1]
# Finall cumsum to give R, C
R_arr = shifts1_arr.cumsum()
C_arr = shifts2_arr.cumsum()
return R_arr, C_arr
Давайте время для различных N's
!
In [133]: N = 100
In [134]: %timeit np.triu_indices(N,1)
10000 loops, best of 3: 122 µs per loop
In [135]: %timeit triu_indices_cumsum(N)
10000 loops, best of 3: 61.7 µs per loop
In [136]: N = 1000
In [137]: %timeit np.triu_indices(N,1)
100 loops, best of 3: 17 ms per loop
In [138]: %timeit triu_indices_cumsum(N)
100 loops, best of 3: 16.3 ms per loop
Таким образом, это выглядит как приличный N's
, индивидуальные cumsum на основе triu_indices
может быть стоит посмотреть!