Реализация PBKDF2 в C# с Rfc2898DeriveBytes
Ребята, я пытаюсь реализовать функцию PBKDF2 в C#, которая создает общий ключ WPA. Я нашел несколько здесь: http://msdn.microsoft.com/en-us/magazine/cc163913.aspx который, кажется, дает действительный результат, но он слишком короток на один байт... и неправильное значение PSK.
Чтобы проверить вывод, я сравниваю его с этим: http://www.xs4all.nl/~rjoris/wpapsk.html или http://anandam.name/pbkdf2/
Я нашел один способ заставить это работать со встроенной библиотекой для C# под названием Rfc2898DeriveBytes. Используя это, я получаю правильный вывод, используя:
Rfc2898DeriveBytes k3 = new Rfc2898DeriveBytes(pwd1, salt1, 4096);
byte[] answers = k3.GetBytes(32);
Теперь одно ограничение, которое я использую с помощью Rfc2898DeriveBytes - это то, что "соль" должна быть длиной 8 октетов. Если это короче, Rfc2898DeriveBytes выдает исключение. Я думал, что все, что мне нужно было сделать, это добавить соли (если она была короче) до 8 байт, и я был бы хорош. Но нет! Я пробовал почти все комбинации заполнения с более короткой солью, но я не могу дублировать результаты, полученные на этих двух сайтах выше.
Итак, суть в том, означает ли это, что Rfc2898DeriveBytes просто не будет работать с исходной солью короче, чем 8 байт? Если так, кто-нибудь знает какой-либо код C#, который я мог бы использовать, который реализует PBKDF2 для WPA Prehared key?
4 ответа
Вот реализация, которая не требует 8-байтовой соли.
Вы можете вычислить ключ WPA следующим образом:
Rfc2898DeriveBytes rfc2898 = new Rfc2898DeriveBytes(passphrase, Encoding.UTF8.GetBytes(name), 4096);
key = rfc2898.GetBytes(32);
public class Rfc2898DeriveBytes : DeriveBytes
{
const int BlockSize = 20;
uint block;
byte[] buffer;
int endIndex;
readonly HMACSHA1 hmacsha1;
uint iterations;
byte[] salt;
int startIndex;
public Rfc2898DeriveBytes(string password, int saltSize)
: this(password, saltSize, 1000)
{
}
public Rfc2898DeriveBytes(string password, byte[] salt)
: this(password, salt, 1000)
{
}
public Rfc2898DeriveBytes(string password, int saltSize, int iterations)
{
if (saltSize < 0)
{
throw new ArgumentOutOfRangeException("saltSize");
}
byte[] data = new byte[saltSize];
new RNGCryptoServiceProvider().GetBytes(data);
Salt = data;
IterationCount = iterations;
hmacsha1 = new HMACSHA1(new UTF8Encoding(false).GetBytes(password));
Initialize();
}
public Rfc2898DeriveBytes(string password, byte[] salt, int iterations) : this(new UTF8Encoding(false).GetBytes(password), salt, iterations)
{
}
public Rfc2898DeriveBytes(byte[] password, byte[] salt, int iterations)
{
Salt = salt;
IterationCount = iterations;
hmacsha1 = new HMACSHA1(password);
Initialize();
}
static byte[] Int(uint i)
{
byte[] bytes = BitConverter.GetBytes(i);
byte[] buffer2 = new byte[] {bytes[3], bytes[2], bytes[1], bytes[0]};
if (!BitConverter.IsLittleEndian)
{
return bytes;
}
return buffer2;
}
byte[] DeriveKey()
{
byte[] inputBuffer = Int(block);
hmacsha1.TransformBlock(salt, 0, salt.Length, salt, 0);
hmacsha1.TransformFinalBlock(inputBuffer, 0, inputBuffer.Length);
byte[] hash = hmacsha1.Hash;
hmacsha1.Initialize();
byte[] buffer3 = hash;
for (int i = 2; i <= iterations; i++)
{
hash = hmacsha1.ComputeHash(hash);
for (int j = 0; j < BlockSize; j++)
{
buffer3[j] = (byte) (buffer3[j] ^ hash[j]);
}
}
block++;
return buffer3;
}
public override byte[] GetBytes(int bytesToGet)
{
if (bytesToGet <= 0)
{
throw new ArgumentOutOfRangeException("bytesToGet");
}
byte[] dst = new byte[bytesToGet];
int dstOffset = 0;
int count = endIndex - startIndex;
if (count > 0)
{
if (bytesToGet < count)
{
Buffer.BlockCopy(buffer, startIndex, dst, 0, bytesToGet);
startIndex += bytesToGet;
return dst;
}
Buffer.BlockCopy(buffer, startIndex, dst, 0, count);
startIndex = endIndex = 0;
dstOffset += count;
}
while (dstOffset < bytesToGet)
{
byte[] src = DeriveKey();
int num3 = bytesToGet - dstOffset;
if (num3 > BlockSize)
{
Buffer.BlockCopy(src, 0, dst, dstOffset, BlockSize);
dstOffset += BlockSize;
}
else
{
Buffer.BlockCopy(src, 0, dst, dstOffset, num3);
dstOffset += num3;
Buffer.BlockCopy(src, num3, buffer, startIndex, BlockSize - num3);
endIndex += BlockSize - num3;
return dst;
}
}
return dst;
}
void Initialize()
{
if (buffer != null)
{
Array.Clear(buffer, 0, buffer.Length);
}
buffer = new byte[BlockSize];
block = 1;
startIndex = endIndex = 0;
}
public override void Reset()
{
Initialize();
}
public int IterationCount
{
get
{
return (int) iterations;
}
set
{
if (value <= 0)
{
throw new ArgumentOutOfRangeException("value");
}
iterations = (uint) value;
Initialize();
}
}
public byte[] Salt
{
get
{
return (byte[]) salt.Clone();
}
set
{
if (value == null)
{
throw new ArgumentNullException("value");
}
salt = (byte[]) value.Clone();
Initialize();
}
}
}
Я получаю совпадающие результаты при сравнении получения ключа из.NET-реализации Rfc2898DeriveBytes и Anandam PBKDF2 Javascript.
Я собрал пример упаковки SlowAES и PBKDF2 от Anandam в компоненты сценариев Windows. Использование этой реализации демонстрирует хорошее взаимодействие с классом.NET RijndaelManaged и классом Rfc2898DeriveBytes.
Смотрите также:
Все это идет дальше, чем вы просите. Все они показывают взаимодействие шифрования AES. Но чтобы получить взаимодействие при шифровании, необходимо предварительное условие для взаимодействия (или соответствующих выходных данных) при получении ключа на основе пароля.
Просматривая ссылку Microsoft, я внес некоторые изменения, чтобы сделать PMK таким же, как те, которые были обнаружены в ссылках, которые вы выдвинули.
Измените алгоритм SHA с SHA256Managed на SHA1Managed для внутреннего и внешнего хэша.
Измените HASH_SIZE_IN_BYTES на 20, а не на 34.
Это дает правильный ключ WPA.
Я знаю, что это немного поздно, но я только начал искать такую информацию и подумал, что могу помочь другим. Если кто-нибудь прочитает этот пост, есть идеи по поводу функции PRF и как это сделать в C#?
Это расширяет ответ Dodgyrabbit, и его код помог исправить мой, когда я разработал это. Этот универсальный класс может использовать любой производный от HMAC класс в C#. Это.NET 4 из-за параметров со значениями по умолчанию, но если они были изменены, это должно работать до.NET 2, но я не проверял это. ИСПОЛЬЗУЙТЕ НА СВОЙ РИСК.
Сегодня я также разместил это в своем блоге "Поворот налево".
using System;
using System.Text;
using System.Security.Cryptography;
namespace System.Security.Cryptography
{
//Generic PBKDF2 Class that can use any HMAC algorithm derived from the
// System.Security.Cryptography.HMAC abstract class
// PER SPEC RFC2898 with help from user Dodgyrabbit on StackExchange
// http://stackru.com/questions/1046599/pbkdf2-implementation-in-c-sharp-with-rfc2898derivebytes
// the use of default values for parameters in the functions puts this at .NET 4
// if you remove those defaults and create the required constructors, you should be able to drop to .NET 2
// USE AT YOUR OWN RISK! I HAVE TESTED THIS AGAINST PUBLIC TEST VECTORS, BUT YOU SHOULD
// HAVE YOUR CODE PEER-REVIEWED AND SHOULD FOLLOW BEST PRACTICES WHEN USING CRYPTO-ANYTHING!
// NO WARRANTY IMPLIED OR EXPRESSED, YOU ARE ON YOUR OWN!
// PUBLIC DOMAIN! NO COPYRIGHT INTENDED OR RESERVED!
//constrain T to be any class that derives from HMAC, and that exposes a new() constructor
public class PBKDF2<T>: DeriveBytes where T : HMAC, new()
{
//Internal variables and public properties
private int _blockSize = -1; // the byte width of the output of the HMAC algorithm
byte[] _P = null;
int _C = 0;
private T _hmac;
byte[] _S = null;
// if you called the initializer/constructor specifying a salt size,
// you will need this property to GET the salt after it was created from the crypto rng!
// GET THIS BEFORE CALLING GETBYTES()! OBJECT WILL BE RESET AFTER GETBYTES() AND
// SALT WILL BE LOST!!
public byte[] Salt { get { return (byte[])_S.Clone(); } }
// Constructors
public PBKDF2(string Password, byte[] Salt, int IterationCount = 1000)
{ Initialize(Password, Salt, IterationCount); }
public PBKDF2(byte[] Password, byte[] Salt, int IterationCount = 1000)
{ Initialize(Password, Salt, IterationCount); }
public PBKDF2(string Password, int SizeOfSaltInBytes, int IterationCount = 1000)
{ Initialize(Password, SizeOfSaltInBytes, IterationCount);}
public PBKDF2(byte[] Password, int SizeOfSaltInBytes, int IterationCount = 1000)
{ Initialize(Password, SizeOfSaltInBytes, IterationCount);}
//All Construtors call the corresponding Initialize methods
public void Initialize(string Password, byte[] Salt, int IterationCount = 1000)
{
if (string.IsNullOrWhiteSpace(Password))
throw new ArgumentException("Password must contain meaningful characters and not be null.", "Password");
if (IterationCount < 1)
throw new ArgumentOutOfRangeException("IterationCount");
Initialize(new UTF8Encoding(false).GetBytes(Password), Salt, IterationCount);
}
public void Initialize(byte[] Password, byte[] Salt, int IterationCount = 1000)
{
//all Constructors/Initializers eventually lead to this one which does all the "important" work
if (Password == null || Password.Length == 0)
throw new ArgumentException("Password cannot be null or empty.", "Password");
if (Salt == null)
Salt = new byte[0];
if (IterationCount < 1)
throw new ArgumentOutOfRangeException("IterationCount");
_P = (byte[])Password.Clone();
_S = (byte[])Salt.Clone();
_C = IterationCount;
//determine _blockSize
_hmac = new T();
_hmac.Key = new byte[] { 0 };
byte[] test = _hmac.ComputeHash(new byte[] { 0 });
_blockSize = test.Length;
}
public void Initialize(string Password, int SizeOfSaltInBytes, int IterationCount = 1000)
{
if (string.IsNullOrWhiteSpace(Password))
throw new ArgumentException("Password must contain meaningful characters and not be null.", "Password");
if (IterationCount < 1)
throw new ArgumentOutOfRangeException("IterationCount");
Initialize(new UTF8Encoding(false).GetBytes(Password), SizeOfSaltInBytes, IterationCount);
}
public void Initialize(byte[] Password, int SizeOfSaltInBytes, int IterationCount = 1000)
{
if (Password == null || Password.Length == 0)
throw new ArgumentException("Password cannot be null or empty.", "Password");
if (SizeOfSaltInBytes < 0)
throw new ArgumentOutOfRangeException("SizeOfSaltInBytes");
if (IterationCount < 1)
throw new ArgumentOutOfRangeException("IterationCount");
// You didn't specify a salt, so I'm going to create one for you of the specific byte length
byte[] data = new byte[SizeOfSaltInBytes];
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
rng.GetBytes(data);
// and then finish initializing...
// Get the salt from the Salt parameter BEFORE calling GetBytes()!!!!!!!!!!!
Initialize(Password, data, IterationCount);
}
~PBKDF2()
{
//*DOOT* clean up in aisle 5! *KEKERKCRACKLE*
this.Reset();
}
// required by the Derive Bytes class/interface
// this is where you request your output bytes after Initialize
// state of class Reset after use!
public override byte[] GetBytes(int ByteCount)
{
if (_S == null || _P == null)
throw new InvalidOperationException("Object not Initialized!");
if (ByteCount < 1)// || ByteCount > uint.MaxValue * blockSize)
throw new ArgumentOutOfRangeException("ByteCount");
int totalBlocks = (int)Math.Ceiling((decimal)ByteCount / _blockSize);
int partialBlock = (int)(ByteCount % _blockSize);
byte[] result = new byte[ByteCount];
byte[] buffer = null;
// I'm using TT here instead of T from the spec because I don't want to confuse it with
// the generic object T
for (int TT = 1; TT <= totalBlocks; TT++)
{
// run the F function with the _C number of iterations for block number TT
buffer = _F((uint)TT);
//IF we're not at the last block requested
//OR the last block requested is whole (not partial)
// then take everything from the result of F for this block number TT
//ELSE only take the needed bytes from F
if (TT != totalBlocks || (TT == totalBlocks && partialBlock == 0))
Buffer.BlockCopy(buffer, 0, result, _blockSize * (TT - 1), _blockSize);
else
Buffer.BlockCopy(buffer, 0, result, _blockSize * (TT - 1), partialBlock);
}
this.Reset(); // force cleanup after every use! Cannot be reused!
return result;
}
// required by the Derive Bytes class/interface
public override void Reset()
{
_C = 0;
_P.Initialize(); // the compiler might optimize this line out! :(
_P = null;
_S.Initialize(); // the compiler might optimize this line out! :(
_S = null;
if (_hmac != null)
_hmac.Clear();
_blockSize = -1;
}
// the core function of the PBKDF which does all the iterations
// per the spec section 5.2 step 3
private byte[] _F(uint I)
{
//NOTE: SPEC IS MISLEADING!!!
//THE HMAC FUNCTIONS ARE KEYED BY THE PASSWORD! NEVER THE SALT!
byte[] bufferU = null;
byte[] bufferOut = null;
byte[] _int = PBKDF2<T>.IntToBytes(I);
_hmac = new T();
_hmac.Key = (_P); // KEY BY THE PASSWORD!
_hmac.TransformBlock(_S, 0, _S.Length, _S, 0);
_hmac.TransformFinalBlock(_int, 0, _int.Length);
bufferU = _hmac.Hash;
bufferOut = (byte[])bufferU.Clone();
for (int c = 1; c < _C; c++)
{
_hmac.Initialize();
_hmac.Key = _P; // KEY BY THE PASSWORD!
bufferU = _hmac.ComputeHash(bufferU);
_Xor(ref bufferOut, bufferU);
}
return bufferOut;
}
// XOR one array of bytes into another (which is passed by reference)
// this is the equiv of data ^= newData;
private void _Xor(ref byte[] data, byte[] newData)
{
for (int i = data.GetLowerBound(0); i <= data.GetUpperBound(0); i++)
data[i] ^= newData[i];
}
// convert an unsigned int into an array of bytes BIG ENDIEN
// per the spec section 5.2 step 3
static internal byte[] IntToBytes(uint i)
{
byte[] bytes = BitConverter.GetBytes(i);
if (!BitConverter.IsLittleEndian)
{
return bytes;
}
else
{
Array.Reverse(bytes);
return bytes;
}
}
}
}