Поиск значения в словаре между диапазонами панд
У меня есть таблица "lookup", отформатированная так:
Min | Max | Val
1 | 99 | "Principal"
100 | 199 | "Partner"
... | ... | ...
E сть CURRENT_POINTS
ряд в моем кадре данных, который находится между Мин или Макс (включительно).
Вопрос: как мне создать VAL
столбец, основанный на приведенной выше таблице поиска? Моей первоначальной мыслью было использовать df.lookup
, но есть 800K строк в df
и поэтому две таблицы не имеют одинакового размера.
Заранее спасибо за помощь!
Какие-нибудь мысли?
1 ответ
Я бы использовал метод cut().
Предполагая, что у вас есть следующие DF:
In [187]: lkp
Out[187]:
Min Max Val
0 1 99 AAA
1 100 199 BBB
2 200 299 CCC
3 300 399 DDD
In [188]: df
Out[188]:
CURRENT_POINTS
0 55
1 10
2 20
3 144
4 194
5 143
6 397
7 233
8 128
9 215
С помощью cut()
Метод, который мы можем создать новый столбец category
dtype, который может сэкономить много памяти:
In [189]: df['Val'] = pd.cut(df.CURRENT_POINTS,
...: bins=[0] + lkp[['Min','Max']].stack()[1::2].tolist(),
...: labels=lkp.Val.tolist())
...:
In [190]: df
Out[190]:
CURRENT_POINTS Val
0 55 AAA
1 10 AAA
2 20 AAA
3 144 BBB
4 194 BBB
5 143 BBB
6 397 DDD
7 233 CCC
8 128 BBB
9 215 CCC
In [191]: df.dtypes
Out[191]:
CURRENT_POINTS int32
Val category
dtype: object
Категория dtype может сэкономить много памяти:
In [192]: big = pd.concat([df] * 10**5, ignore_index=True)
In [193]: big.shape
Out[193]: (1000000, 2)
In [194]: big['str_col'] = 'AAA'
In [198]: big.dtypes
Out[198]:
CURRENT_POINTS int32
Val category
str_col object
dtype: object
In [195]: big.memory_usage()
Out[195]:
Index 80
CURRENT_POINTS 4000000
Val 1000032 # <--- `category` column takes 1 byte per row (plus 32 bytes overhead)
str_col 8000000
In [197]: big.head()
Out[197]:
CURRENT_POINTS Val str_col
0 55 AAA AAA
1 10 AAA AAA
2 20 AAA AAA
3 144 BBB AAA
4 194 BBB AAA
ПРИМЕЧАНИЕ: обратите внимание на использование памяти для category
колонка Val
и для str_col
столбец (dtype: object
)
Объяснение:
бункеры:
In [199]: lkp[['Min','Max']]
Out[199]:
Min Max
0 1 99
1 100 199
2 200 299
3 300 399
In [200]: lkp[['Min','Max']].stack()
Out[200]:
0 Min 1
Max 99
1 Min 100
Max 199
2 Min 200
Max 299
3 Min 300
Max 399
dtype: int64
In [201]: lkp[['Min','Max']].stack()[1::2].tolist()
Out[201]: [99, 199, 299, 399]
In [202]: [0] + lkp[['Min','Max']].stack()[1::2].tolist()
Out[202]: [0, 99, 199, 299, 399]
метки:
In [203]: lkp.Val.tolist()
Out[203]: ['AAA', 'BBB', 'CCC', 'DDD']
НОТА: lkp
должны быть отсортированы по ['Min', 'Max']
прежде чем использовать его для bins
а также labels
,
Вот небольшая демонстрация для сортировки:
In [2]: lkp
Out[2]:
Min Max Val
0 300 399 DDD
1 100 199 BBB
2 1 99 AAA
3 200 299 CCC
In [4]: lkp = lkp.sort_values(['Min','Max'])
In [5]: lkp
Out[5]:
Min Max Val
2 1 99 AAA
1 100 199 BBB
3 200 299 CCC
0 300 399 DDD