Заполнить пробел по дате и времени по NaN
У меня есть два кадра данных, которые индексируются с указанием даты и времени. Один пропускает несколько из этих датdf1
) в то время как другой завершен (имеет регулярные метки времени без пробелов в этой серии) и полон NaN
s (df2
).
Я пытаюсь сопоставить значения от df1 до индекса df2
, заполняя NaN
где такая datetimeindex
не существует в df1
,
Пример:
In [51]: df1
Out [51]: value
2015-01-01 14:00:00 20
2015-01-01 15:00:00 29
2015-01-01 16:00:00 41
2015-01-01 17:00:00 43
2015-01-01 18:00:00 26
2015-01-01 19:00:00 20
2015-01-01 20:00:00 31
2015-01-01 21:00:00 35
2015-01-01 22:00:00 39
2015-01-01 23:00:00 17
2015-03-01 00:00:00 6
2015-03-01 01:00:00 37
2015-03-01 02:00:00 56
2015-03-01 03:00:00 12
2015-03-01 04:00:00 41
2015-03-01 05:00:00 31
... ...
2018-12-25 23:00:00 41
<34843 rows × 1 columns>
In [52]: df2 = pd.DataFrame(data=None, index=pd.date_range(freq='60Min', start=df1.index.min(), end=df1.index.max()))
df2['value']=np.NaN
df2
Out [52]: value
2015-01-01 14:00:00 NaN
2015-01-01 15:00:00 NaN
2015-01-01 16:00:00 NaN
2015-01-01 17:00:00 NaN
2015-01-01 18:00:00 NaN
2015-01-01 19:00:00 NaN
2015-01-01 20:00:00 NaN
2015-01-01 21:00:00 NaN
2015-01-01 22:00:00 NaN
2015-01-01 23:00:00 NaN
2015-01-02 00:00:00 NaN
2015-01-02 01:00:00 NaN
2015-01-02 02:00:00 NaN
2015-01-02 03:00:00 NaN
2015-01-02 04:00:00 NaN
2015-01-02 05:00:00 NaN
... ...
2018-12-25 23:00:00 NaN
<34906 rows × 1 columns>
С помощью df2.combine_first(df1)
возвращает те же данные, что и df1.reindex(index= df2.index)
, который заполняет любые пробелы, где не должно быть данных с некоторым значением, а не NaN.
In [53]: Result = df2.combine_first(df1)
Result
Out [53]: value
2015-01-01 14:00:00 20
2015-01-01 15:00:00 29
2015-01-01 16:00:00 41
2015-01-01 17:00:00 43
2015-01-01 18:00:00 26
2015-01-01 19:00:00 20
2015-01-01 20:00:00 31
2015-01-01 21:00:00 35
2015-01-01 22:00:00 39
2015-01-01 23:00:00 17
2015-01-02 00:00:00 35
2015-01-02 01:00:00 53
2015-01-02 02:00:00 28
2015-01-02 03:00:00 48
2015-01-02 04:00:00 42
2015-01-02 05:00:00 51
... ...
2018-12-25 23:00:00 41
<34906 rows × 1 columns>
Вот что я надеялся получить:
Out [53]: value
2015-01-01 14:00:00 20
2015-01-01 15:00:00 29
2015-01-01 16:00:00 41
2015-01-01 17:00:00 43
2015-01-01 18:00:00 26
2015-01-01 19:00:00 20
2015-01-01 20:00:00 31
2015-01-01 21:00:00 35
2015-01-01 22:00:00 39
2015-01-01 23:00:00 17
2015-01-02 00:00:00 NaN
2015-01-02 01:00:00 NaN
2015-01-02 02:00:00 NaN
2015-01-02 03:00:00 NaN
2015-01-02 04:00:00 NaN
2015-01-02 05:00:00 NaN
... ...
2018-12-25 23:00:00 41
<34906 rows × 1 columns>
Может ли кто-то пролить свет на то, почему это происходит, и как установить, как эти значения заполняются?
1 ответ
IIUC вам нужно resample
df1
потому что у вас нерегулярный frequency
и вам нужна регулярная частота:
print df1.index.freq
None
print Result.index.freq
<60 * Minutes>
EDIT1
Вы можете использовать функцию asfreq
вместо resample
- док, resample vs asfreq
,
EDIT2
Сначала я думаю, что resample
не работал, потому что после пересчета Result
такой же как df1
, Но я пытаюсь print df1.info()
а также print Result.info()
получает разные результаты - 34857 entries
против 34920 entries
, Поэтому я пытаюсь найти строки с NaN
значения и он возвращает 63 rows
,
Я так думаю resample
работает хорошо.
import pandas as pd
df1 = pd.read_csv('test/GapInTimestamps.csv', sep=",", index_col=[0], parse_dates=[0])
print df1.head()
# value
#Date/Time
#2015-01-01 00:00:00 52
#2015-01-01 01:00:00 5
#2015-01-01 02:00:00 12
#2015-01-01 03:00:00 54
#2015-01-01 04:00:00 47
print df1.info()
#<class 'pandas.core.frame.DataFrame'>
#DatetimeIndex: 34857 entries, 2015-01-01 00:00:00 to 2018-12-25 23:00:00
#Data columns (total 1 columns):
#value 34857 non-null int64
#dtypes: int64(1)
#memory usage: 544.6 KB
#None
Result = df1.resample('60min')
print Result.head()
# value
#Date/Time
#2015-01-01 00:00:00 52
#2015-01-01 01:00:00 5
#2015-01-01 02:00:00 12
#2015-01-01 03:00:00 54
#2015-01-01 04:00:00 47
print Result.info()
#<class 'pandas.core.frame.DataFrame'>
#DatetimeIndex: 34920 entries, 2015-01-01 00:00:00 to 2018-12-25 23:00:00
#Freq: 60T
#Data columns (total 1 columns):
#value 34857 non-null float64
#dtypes: float64(1)
#memory usage: 545.6 KB
#None
#find values with NaN
resultnan = Result[Result.isnull().any(axis=1)]
#temporaly display 999 rows and 15 columns
with pd.option_context('display.max_rows', 999, 'display.max_columns', 15):
print resultnan
# value
#Date/Time
#2015-01-13 19:00:00 NaN
#2015-01-13 20:00:00 NaN
#2015-01-13 21:00:00 NaN
#2015-01-13 22:00:00 NaN
#2015-01-13 23:00:00 NaN
#2015-01-14 00:00:00 NaN
#2015-01-14 01:00:00 NaN
#2015-01-14 02:00:00 NaN
#2015-01-14 03:00:00 NaN
#2015-01-14 04:00:00 NaN
#2015-01-14 05:00:00 NaN
#2015-01-14 06:00:00 NaN
#2015-01-14 07:00:00 NaN
#2015-01-14 08:00:00 NaN
#2015-01-14 09:00:00 NaN
#2015-02-01 00:00:00 NaN
#2015-02-01 01:00:00 NaN
#2015-02-01 02:00:00 NaN
#2015-02-01 03:00:00 NaN
#2015-02-01 04:00:00 NaN
#2015-02-01 05:00:00 NaN
#2015-02-01 06:00:00 NaN
#2015-02-01 07:00:00 NaN
#2015-02-01 08:00:00 NaN
#2015-02-01 09:00:00 NaN
#2015-02-01 10:00:00 NaN
#2015-02-01 11:00:00 NaN
#2015-02-01 12:00:00 NaN
#2015-02-01 13:00:00 NaN
#2015-02-01 14:00:00 NaN
#2015-02-01 15:00:00 NaN
#2015-02-01 16:00:00 NaN
#2015-02-01 17:00:00 NaN
#2015-02-01 18:00:00 NaN
#2015-02-01 19:00:00 NaN
#2015-02-01 20:00:00 NaN
#2015-02-01 21:00:00 NaN
#2015-02-01 22:00:00 NaN
#2015-02-01 23:00:00 NaN
#2015-11-01 00:00:00 NaN
#2015-11-01 01:00:00 NaN
#2015-11-01 02:00:00 NaN
#2015-11-01 03:00:00 NaN
#2015-11-01 04:00:00 NaN
#2015-11-01 05:00:00 NaN
#2015-11-01 06:00:00 NaN
#2015-11-01 07:00:00 NaN
#2015-11-01 08:00:00 NaN
#2015-11-01 09:00:00 NaN
#2015-11-01 10:00:00 NaN
#2015-11-01 11:00:00 NaN
#2015-11-01 12:00:00 NaN
#2015-11-01 13:00:00 NaN
#2015-11-01 14:00:00 NaN
#2015-11-01 15:00:00 NaN
#2015-11-01 16:00:00 NaN
#2015-11-01 17:00:00 NaN
#2015-11-01 18:00:00 NaN
#2015-11-01 19:00:00 NaN
#2015-11-01 20:00:00 NaN
#2015-11-01 21:00:00 NaN
#2015-11-01 22:00:00 NaN
#2015-11-01 23:00:00 NaN