MemorError при расчете silhouette_score

Я запускаю алгоритм кластеризации KMeans на матрице с формой (190868,35). Я использую следующий код для того же:

for n_clusters in range(3,10):
kmeans = KMeans(init='k-means++',n_clusters=n_clusters,n_init=30)
kmeans.fit(matrix)
clusters = kmeans.predict(matrix)
silhouette_avg=silhouette_score(matrix,clusters)
print("For n_clusters =",n_clusters,"The avg silhouette_score is :",silhouette_avg)

и у меня появляется следующая ошибка

Traceback (most recent call last):

  File "<ipython-input-6-be918e90030a>", line 5, in <module>
    silhouette_avg=silhouette_score(matrix,clusters)

  File "C:\Users\arindam\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py", line 101, in silhouette_score
    return np.mean(silhouette_samples(X, labels, metric=metric, **kwds))

  File "C:\Users\arindam\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py", line 169, in silhouette_samples
    distances = pairwise_distances(X, metric=metric, **kwds)

  File "C:\Users\arindam\Anaconda3\lib\site-packages\sklearn\metrics\pairwise.py", line 1247, in pairwise_distances
    return _parallel_pairwise(X, Y, func, n_jobs, **kwds)

  File "C:\Users\arindam\Anaconda3\lib\site-packages\sklearn\metrics\pairwise.py", line 1090, in _parallel_pairwise
    return func(X, Y, **kwds)

  File "C:\Users\arindam\Anaconda3\lib\site-packages\sklearn\metrics\pairwise.py", line 246, in euclidean_distances
    distances = safe_sparse_dot(X, Y.T, dense_output=True)

  File "C:\Users\arindam\Anaconda3\lib\site-packages\sklearn\utils\extmath.py", line 140, in safe_sparse_dot
    return np.dot(a, b)

MemoryError

Если кто-нибудь знает какое-либо решение для этого, пожалуйста, предложите. Я попытался указать sample_size = 70000, код работает и использует всю память, и система зависает. У меня Lenovo Thinkpad с 16 ГБ оперативной памяти и процессором i7.

1 ответ

MemoryError означает, что памяти недостаточно для размещения массива numpy во время выполнения silhouette_score, Таким образом, решение состоит в том, чтобы использовать меньше памяти или увеличить объем памяти:

Решение 1. Выделите меньше памяти, установив sample_size в silhouette_score

ссылка: /questions/9336678/kak-ya-mogu-ispravit-oshibku-memoryerror-pri-vyipolnenii-otsenki-silueta-scikit-learns/9336688#9336688

Как найти максимально подходящий sample_size?

def eval_silhouette_score(matrix, clusters, sample_size):
    try:
        silhouette_avg = metrics.silhouette_score(matrix, clusters, sample_size = sample_size)
        return silhouette_avg
    except MemoryError:
        return None

div_factor = 1.
silhouette_avg = None
while silhouette_avg == None:
    sample_size = int(len(clusters) / div_factor)
    silhouette_avg = eval_silhouette_score(matrix, clusters, sample_size)
    div_factor += 1.

Решение 2. Установите больше физических воспоминаний:)

Другие вопросы по тегам