Разные результаты для идентичных моделей оптимизации, за исключением коэффициентов затрат в целевой функции: Neos, Bonmin, Ipopt
Я использую решатель neos bonmin, чтобы найти глобальное минимальное решение смешанной целочисленной нелинейной задачи со строгими ограничениями. Ниже приведены результаты для моделей, которые идентичны, за исключением того, что коэффициенты в целевой функции стоимости меньше для результатов, которые находят оптимальное решение.
Может ли кто-нибудь привести мне пример, почему это могло произойти?
Существуют ли варианты Ipopt или Bonmin, которые позволят решателю обойти первое недопустимое решение для модели с более высокими стоимостными коэффициентами?
Я прошел оба варианта решателя здесь
Бонмин варианты
https://projects.coin-or.org/Bonmin/browser/stable/1.8/Bonmin/doc/BONMIN_UsersManual.pdf?format=raw
Варианты Ipopt
https://www.coin-or.org/Ipopt/documentation/node40.html
Объективные коэффициенты стоимости выше в этом примере, и я получаю окончательное неосуществимое решение
Presolve eliminates 26984 constraints and 25542 variables.
Substitution eliminates 3585 variables.
Adjusted problem:
6113 variables:
24 binary variables
3873 nonlinear variables
2216 linear variables
5693 constraints; 57445 nonzeros
2338 nonlinear constraints
3355 linear constraints
5328 equality constraints
365 inequality constraints
1 linear objective; 9 nonzeros.
Setting $presolve_fixeps >= 1.9e-14 could change presolve results.
Bonmin 1.8.4 using Cbc 2.9.6 and Ipopt 3.12.4
bonmin: bonmin.algorithm B-Hyb
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************
NLP0012I
Num Status Obj It time Location
NLP0014I 1 INFEAS 8957753.5 5688 534.7767 build initial OA
NLP3017W OA on non-convex constraint is very experimental.
Cbc0006I The LP relaxation is infeasible or too expensive
"Finished"
bonmin: Infeasible problem
solve_result_num = 220
solve_result = infeasible
cost.result = infeasible
и объективные коэффициенты стоимости ниже в этом результате, где я получаю оптимальное решение
Presolve eliminates 26984 constraints and 25542 variables.
Substitution eliminates 3585 variables.
Adjusted problem:
6113 variables:
24 binary variables
3873 nonlinear variables
2216 linear variables
5693 constraints; 57445 nonzeros
2338 nonlinear constraints
3355 linear constraints
5328 equality constraints
365 inequality constraints
1 linear objective; 9 nonzeros.
Setting $presolve_fixeps >= 1.9e-14 could change presolve results.
Bonmin 1.8.4 using Cbc 2.9.6 and Ipopt 3.12.4
NLP0012I
Num Status Obj It time Location
NLP0014I 1 INFEAS 1.5097545e-05 6467 621.84647 build initial OA
NLP3017W OA on non-convex constraint is very experimental.
NLP0014I 2 OPT 26013213 214 16.333517 FP for MINLP
NLP0014I 3 OPT 26013213 160 9.492557 check integer sol.
OA0003I New best feasible of 26013213 found after 26.516969 sec and
NLP0014I 4 OPT 26013213 160 9.377574 check integer sol.
OA0003I New best feasible of 26013213 found after 36.294482 sec and
Cbc0012I Integer solution of 26013213 found by nonlinear programm after 0 iterations and 0 nodes (35.85 seconds)
Cbc0031I 373 added rows had average density of 11.38874
Cbc0013I At root node, 699 cuts changed objective from 26013213 to 26013213 in 2 passes
Cbc0014I Cut generator 0 (NLP solution based oa cuts) - 0 row cuts average 0.0 elements, 0 column cuts (0 active)
Cbc0014I Cut generator 1 (Mixed Integer Gomory) - 0 row cuts average 0.0 elements, 0 column cuts (0 active)
Cbc0014I Cut generator 2 (Mixed Integer Rounding) - 0 row cuts average 0.0 elements, 0 column cuts (0 active)
Cbc0014I Cut generator 3 (Clique) - 0 row cuts average 0.0 elements, 0 column cuts (0 active)
Cbc0014I Cut generator 4 (Flow Covers) - 0 row cuts average 0.0 elements, 0 column cuts (0 active)
Cbc0014I Cut generator 5 (Feasibility Pump for MINLP.) - 0 row cuts average 0.0 elements, 0 column cuts (0 active)
Cbc0014I Cut generator 6 (Outer Approximation feasibility check.) - 921 row cuts average 8.0 elements, 0 column cuts (0 active)
Cbc0014I Cut generator 7 (Outer Approximation strong branching solution check.) - 0 row cuts average 0.0 elements, 0 column cuts (0 active)
Cbc0001I Search completed - best objective 26013212.66256024, took 434 iterations and 0 nodes (36.09 seconds)
Cbc0035I Maximum depth 0, 0 variables fixed on reduced cost
Outer Approximation feasibility check. was tried 2 times and created 921 cuts of which 0 were active after adding rounds of cuts
"Finished"
bonmin: Optimal
solve_result_num = 3
solve_result = solved
cost.result = solved
Вот целевая функция стоимости и ограничения стоимости из моей модели. Я не могу поделиться всей своей моделью, потому что это несколько тысяч строк.
minimize cost: CLuSet1 + CLuSet2 + CLuSet3 + CLuSet4 + CLuSet5 + CLuSet6 + CLuSet7 + CLuSet8 + CWMake + CGwMake + CRipTotal;
subject to c_luset1:
CLuSet1 = 0;
subject to c_luset2:
CLuSet2 = 54018.1562808425 * DALu12 + 11773.6164636535 * DALu12 + 54018.1562808425 * DALu22 + 11773.6164636535 * DALu22 + 122347.053122918 * DALu32 + 14046.1548008848 * DALu32 + 122347.053122918 * DALu42 + 14046.1548008848 * DALu42 + 67585.1670257089 * DALu52 + 26063.9453787701 * DALu52 + 67585.1670257089 * DALu62 + 26063.9453787701 * DALu62 + 83360.0744735154 * DALu72 + 8648.92263104654 * DALu72 + 83360.0744735154 * DALu82 + 8648.92263104654 * DALu82;
subject to c_luset3:
CLuSet3 = 16800.6706442194 * DALu13 + 13662.2690399705 * DALu13 + 16800.6706442194 * DALu23 + 13662.2690399705 * DALu23 + 66478.7502894276 * DALu33 + 16299.3542773528 * DALu33 + 66478.7502894276 * DALu43 + 16299.3542773528 * DALu43 + 67585.1670257089 * DALu53 + 30244.9663709661 * DALu53 + 67585.1670257089 * DALu63 + 30244.9663709661 * DALu63 + 63736.1798227559 * DALu73 + 10036.3306598302 * DALu73 + 63736.1798227559 * DALu83 + 10036.3306598302 * DALu83;
subject to c_luset4:
CLuSet4 = 94366.3428878643 * DALu14 + 11248.1445775008 * DALu14 + 94366.3428878643 * DALu24 + 11248.1445775008 * DALu24 + 94366.3428878643 * DALu34 + 13419.2565594482 * DALu34 + 94366.3428878643 * DALu44 + 13419.2565594482 * DALu44 + 94366.3428878643 * DALu54 + 24900.6774414253 * DALu54 + 94366.3428878643 * DALu64 + 24900.6774414253 * DALu64 + 94366.3428878643 * DALu74 + 8262.90991336076 * DALu74 + 94366.3428878643 * DALu84 + 8262.90991336076 * DALu84;
subject to c_luset5:
CLuSet5 = 19152.7645344101 * DALu15 + 4752.09357912019 * DALu15 + 19152.7645344101 * DALu25 + 4752.09357912019 * DALu25 + 19152.7645344101 * DALu35 + 5669.34061820967 * DALu35 + 19152.7645344101 * DALu45 + 5669.34061820966 * DALu45 + 19152.7645344101 * DALu55 + 10519.9883029447 * DALu55 + 19152.7645344101 * DALu65 + 10519.9883029447 * DALu65 + 19152.7645344101 * DALu75 + 3490.89762081051 * DALu75 + 19152.7645344101 * DALu85 + 3490.89762081051 * DALu85;
subject to c_luset6:
CLuSet6 = 139205.556766389 * DALu16 + 4051.46439758324 * DALu16 + 139205.556766389 * DALu26 + 4051.46439758324 * DALu26 + 663624.894768934 * DALu36 + 4833.47629629414 * DALu36 + 663624.894768934 * DALu46 + 4833.47629629414 * DALu46 + 605356.079435318 * DALu56 + 8968.96438648493 * DALu56 + 605356.079435318 * DALu66 + 8968.96438648493 * DALu66 + 605356.079435318 * DALu76 + 2976.21399722947 * DALu76 + 605356.079435318 * DALu86 + 2976.21399722947 * DALu86;
subject to c_luset7:
CLuSet7 = 178407.121602901 * DALu17 + 5178.5635157079 * DALu17 + 178407.121602901 * DALu27 + 5178.5635157079 * DALu27 + 226482.571822542 * DALu37 + 6178.12759676694 * DALu37 + 226482.571822542 * DALu47 + 6178.12759676694 * DALu47 + 219086.348711828 * DALu57 + 11464.0898173116 * DALu57 + 219086.348711828 * DALu67 + 11464.0898173116 * DALu67 + 219086.348711828 * DALu77 + 3804.1833047294 * DALu77 + 219086.348711828 * DALu87 + 3804.1833047294 * DALu87;
subject to c_luset8:
CLuSet8 = 4800.19161263411 * DALu18 + 5178.5635157079 * DALu18 + 4800.19161263411 * DALu28 + 5178.5635157079 * DALu28 + 6276.63444832917 * DALu38 + 6178.12759676694 * DALu38 + 6276.63444832917 * DALu48 + 6178.12759676694 * DALu48 + 6065.71404322987 * DALu58 + 11464.0898173116 * DALu58 + 6065.71404322987 * DALu68 + 11464.0898173116 * DALu68 + 6065.71404322987 * DALu78 + 3804.1833047294 * DALu78 + 6065.71404322987 * DALu88 + 3804.1833047294 * DALu88;
subject to c_wmake:
CWMake = sum{t in time}0.264172052358148 * DQWMake[t];
subject to c_gwmake:
CGwMake = sum{t in time}264172.052358148 * DQGwMake[t];
Здесь переменные, начинающиеся с "DRipSet", являются бинарными решениями.
subject to c_ripset111:
CRipSet111 = DRipSet1112 * (101811.344386982);
subject to c_ripset112:
CRipSet112 = DRipSet1122 * (382859.370549274);
subject to c_ripset113:
CRipSet113 = DRipSet1132 * (206.655198893719);
subject to c_ripset121:
CRipSet121 = DRipSet1212 * (127794.539554323);
subject to c_ripset122:
CRipSet122 = DRipSet1222 * (365971.521880556);
subject to c_ripset123:
CRipSet123 = DRipSet1232 * (668.274604214754);
subject to c_ripset131:
CRipSet131 = DRipSet1312 * (60888.2524447538);
subject to c_ripset132:
CRipSet132 = DRipSet1322 * (66799.0180114126);
subject to c_ripset133:
CRipSet133 = DRipSet1332 * (1433.75877136016);
subject to c_ripset141:
CRipSet141 = DRipSet1412 * (26751.9382774102);
subject to c_ripset142:
CRipSet142 = DRipSet1422 * (59526.2633940657);
subject to c_ripset143:
CRipSet143 = DRipSet1432 * (1868.05965227538);
subject to c_ripset151:
CRipSet151 = DRipSet1512 * (11834.6866568883);
subject to c_ripset152:
CRipSet152 = DRipSet1522 * (51682.9497507372);
subject to c_ripset161:
CRipSet161 = DRipSet1612 * (9385.83301215532);
subject to c_ripset162:
CRipSet162 = DRipSet1622 * (72091.8418398067);
subject to c_ripset171:
CRipSet171 = DRipSet1712 * (9256.58730682722);
subject to c_ripset172:
CRipSet172 = DRipSet1722 * (84265.8291042471);
subject to c_ripset173:
CRipSet173 = DRipSet1732 * (433.057013317928);
subject to c_ripset181:
CRipSet181 = DRipSet1812 * (11542.679010938);
subject to c_ripset182:
CRipSet182 = DRipSet1822 * (130979.048843908);
subject to c_ripset183:
CRipSet183 = DRipSet1832 * (8666.62200070436);
subject to c_riptotal:
CRipTotal = CRipSet111 + CRipSet112 + CRipSet113 + CRipSet121 + CRipSet122 + CRipSet123 + CRipSet131 + CRipSet132 + CRipSet133 + CRipSet141 + CRipSet142 + CRipSet143 + CRipSet151 + CRipSet152 + CRipSet161 + CRipSet162 + CRipSet171 + CRipSet172 + CRipSet173 + CRipSet181 + CRipSet182 + CRipSet183;