cuda и cub реализация множественного k-выделения
Я пытаюсь реализовать множественный выбор top-k параллельно, где каждый выбор выбирает k элементов из списка из n элементов, и m таких задач должны выполняться параллельно. Я использую детеныша, чтобы сделать это. Я получил странную ошибку, и я не знаю, где я сделал не так. Я чувствую, что, возможно, допустил некоторую очевидную ошибку в моем понимании, может ли кто-нибудь помочь мне проверить?
РЕДАКТИРОВАТЬ:
Я сделал это, добавив два cudaDeviceSynchronize()
звонки, перед каждым из двух разделов кода, который содержит free()
, Итак, теперь мой вопрос: free
ведет себя иначе, чем cudaFree
в том, что асинхронные вызовы, выполняющиеся немедленно, запрещены, в отличие от другого вопроса, который я задал здесь: работает ли cudaFree после асинхронного вызова?
// Assume dtop has size k x m and dmat has size n x m, where k < n
// Each column of dtop is supposed to obtain the top-k indices of
// elements from the corresponding column in dmat.
template<typename ValueType, typename IndexType>
void TopKPerColumn_cub_test(DenseMatrix<IndexType, MemDev> dtop,
DenseMatrix<ValueType, MemDev, Const> dmat);
template<typename T>
struct SelectLE {
T x_;
__device__ SelectLE(const T& x):x_(x){}
__device__ bool operator() (const T& a) {
return a > x_;
}
};
template<typename ValueType, typename IndexType>
__global__ void k_TopKPerColumn_cub_test(DenseMatrix<IndexType, MemDev> dtop,
DenseMatrix<ValueType, MemDev, Const> dmat) {
int n = dmat.num_rows();
int k = dtop.num_rows();
cub::DoubleBuffer<ValueType> keys;
keys.d_buffers[0] = reinterpret_cast<ValueType*>(
malloc(sizeof(ValueType) * n));
keys.d_buffers[1] = reinterpret_cast<ValueType*>(
malloc(sizeof(ValueType) * n));
memcpy(keys.d_buffers[keys.selector], dmat.get_col(blockIdx.x).data(),
sizeof(ValueType) * n);
void* temp_storage = 0;
size_t temp_storage_size = 0;
cub::DeviceRadixSort::SortKeysDescending(
temp_storage, temp_storage_size, keys, n);
temp_storage = malloc(temp_storage_size);
cub::DeviceRadixSort::SortKeysDescending(
temp_storage, temp_storage_size, keys, n);
ValueType kth = keys.Current()[k-1];
free(temp_storage);
free(keys.d_buffers[0]);
free(keys.d_buffers[1]);
temp_storage = 0;
temp_storage_size = 0;
int* nb_selected = reinterpret_cast<int*>(malloc(sizeof(int)));
SelectLE<ValueType> selector(kth);
cub::DeviceSelect::If(temp_storage, temp_storage_size,
const_cast<ValueType*>(dmat.get_col(blockIdx.x).data()),
dtop.get_col(blockIdx.x).data(),
nb_selected, n, selector);
temp_storage = malloc(temp_storage_size);
cub::DeviceSelect::If(temp_storage, temp_storage_size,
const_cast<ValueType*>(dmat.get_col(blockIdx.x).data()),
dtop.get_col(blockIdx.x).data(),
nb_selected, n, selector);
free(nb_selected);
free(temp_storage);
}
template<typename ValueType, typename IndexType>
void TopKPerColumn_cub_test(DenseMatrix<IndexType, MemDev> dtop,
DenseMatrix<ValueType, MemDev, Const> dmat) {
k_TopKPerColumn_cub_test<<<dtop.num_cols(), 1>>>(dtop, dmat);
}
1 ответ
Хотя я могу заставить его работать, эта реализация работает медленнее, чем однопоточный код процессора. В конце концов я реализовал это с помощью сортировки кучи и поместил кучу в общую память. Производительность хорошая.